Randomized controlled trial for time-restricted eating in overweight and obese young adults

Li-Min Zhang, Zhan Liu, Jia-Qi Wang, Rui-Qiang Li, Jing-Yi Ren, Xian Gao, Shuai-Shuai Lv, Lu-Yao Liang, Fan Zhang, Bo-Wen Yin, Yan Sun, Hao Tian, Hui-Chen Zhu, Yu-Tian Zhou, Yu-Xia Ma, Li-Min Zhang, Zhan Liu, Jia-Qi Wang, Rui-Qiang Li, Jing-Yi Ren, Xian Gao, Shuai-Shuai Lv, Lu-Yao Liang, Fan Zhang, Bo-Wen Yin, Yan Sun, Hao Tian, Hui-Chen Zhu, Yu-Tian Zhou, Yu-Xia Ma

Abstract

Time-restricted eating (TRE) is known to improve metabolic health, whereas very few studies have compared the effects of early and late TRE (eTRE and lTRE) on metabolic health. Overweight and obese young adults were randomized to 6-h eTRE (eating from 7 a.m. to 1 p.m.) (n = 21), 6-h lTRE (eating from 12 p.m. to 6 p.m.) (n = 20), or a control group (ad libitum intake in a day) (n = 19). After 8 weeks, 6-h eTRE and lTRE produced comparable body weight loss compared with controls. Compared with control, 6-h eTRE reduced systolic blood pressure, mean glucose, fasting insulin, insulin resistance, leptin, and thyroid axis activity, whereas lTRE only reduced leptin. These findings shed light on the promise of 6-h eTRE and lTRE for weight loss. Larger studies are needed to assess the promise of eTRE to yield better thyroid axis modulation and overall cardiometabolic health improvement.

Keywords: Health sciences; Human metabolism; Obesity medicine.

Conflict of interest statement

The authors declare no competing interests.

© 2022 The Author(s).

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Time-restricted eating (TRE) interventions and CONSORT flow diagram (A) TRE interventions. Participants were randomized to a control group (ad libitum intake), 6-h eTRE group (ad libitum intake from 7:00 a.m. to 13:00 p.m.), or 6-h lTRE group (ad libitum intake from 12:00 p.m. to 18:00 p.m.). (B) CONSORT flow diagram describing the process of participant enrollment, intervention, and data analysis.
Figure 2
Figure 2
Weight and body composition (A–D) Changes in percentage weight loss (A), fat mass (B), percent body fat (C), and lean mass (D) after 4 and 8 weeks of intervention. Data are presented as least squares mean ± SEM; ∗p < 0.05 versus control group, ∗∗p < 0.01 versus control group, ∗∗∗p < 0.001 versus control group, ##p < 0.01 versus eTRE group. See also Figure S1 and Tables S2 and S4.
Figure 3
Figure 3
Cardiometabolic risk markers (A) Glucose regulation. C-P, C-peptide; HOMA-IR, homeostasis model assessment insulin resistance. (B) Blood pressure. BP, blood pressure. (C) Lipid profile. TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol. (D) Hormones. TSH, thyroid-stimulating hormone; TT3, triiodothyronine. Data are presented as least squares mean ± SEM; ∗p < 0.05 versus control group, ∗∗p < 0.01 versus control group, ∗∗∗p < 0.001 versus control group, ###p < 0.001 versus eTRE group. See also Figure S2 and Tables S1, S2, S4, and S5.
Figure 4
Figure 4
Oxidative stress markers and inflammatory (A–G) Changes in superoxide dismutase (SOD) (A), malondialdehyde (MDA) (B), 8-isoprostane (C), high-sensitivity C-reactive protein (hs-CRP) (D), tumor necrosis factor alpha (TNF-α) (E), interleukin-6 (IL-6) (F), and cortisol (G) levels after 4 and 8 weeks of intervention. Data are presented as least squares mean ± SEM; ∗∗∗p < 0.001 versus control group, #p < 0.05 versus eTRE group, ##p < 0.01 versus eTRE group. See also Table S2.
Figure 5
Figure 5
Subjective appetite Participants rated their appetite on a 0–100 mm visual analog scale, ranging from “Not at All” (0 mm) to “Extremely” (100 mm). (A–E) Hunger (A), capacity to eat (B), desire to eat (C), fullness (D), and stomach fullness (E) in the morning, midday, and evening in 8 weeks. Data are presented as mean ± SEM; ∗p < 0.05 versus control group, #p < 0.05 versus eTRE group.
Figure 6
Figure 6
Change in eating window and compliance (A and B) Mean time and SD for the participant started and stopped eating at baseline (red) and intervention (blue) in the 6-h eTRE (A) and 6-h lTRE group (B) y axis: each blue/red combination represents an individual participant. x axis: clock hour for eating event. (C) Daily compliance of the dietary regimen for the 6-h eTRE and lTRE groups during the 8-week intervention period. See also Figure S3.

References

    1. Anton S.D., Lee S.A., Donahoo W.T., McLaren C., Manini T., Leeuwenburgh C., Pahor M. The effects of time restricted feeding on overweight, older adults: a pilot study. Nutrients. 2019;11:E1500. doi: 10.3390/nu11071500.
    1. Antoni R., Robertson T.M., Robertson M.D., Johnston J.D. A pilot feasibility study exploring the effects of a moderate time-restricted feeding intervention on energy intake, adiposity and metabolic physiology in free-living human subjects. J. Nutr. Sci. 2018;7:e22. doi: 10.1017/jns.2018.13.
    1. Arnason T.G., Bowen M.W., Mansell K.D. Effects of intermittent fasting on health markers in those with type 2 diabetes: a pilot study. World J. Diabetes. 2017;8:154–164. doi: 10.4239/wjd.v8.i4.154.
    1. Berrington de Gonzalez A., Hartge P., Cerhan J.R., Flint A.J., Hannan L., MacInnis R.J., Moore S.C., Tobias G.S., Anton-Culver H., Freeman L.B., et al. Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 2010;363:2211–2219. doi: 10.1056/NEJMoa1000367.
    1. Bessesen D.H., Van Gaal L.F. Progress and challenges in anti-obesity pharmacotherapy. Lancet Diabetes Endocrinol. 2018;6:237–248. doi: 10.1016/s2213-8587(17)30236-x.
    1. Bhutani S., Klempel M.C., Kroeger C.M., Trepanowski J.F., Varady K.A. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity. 2013;21:1370–1379. doi: 10.1002/oby.20353.
    1. Biston P., Van Cauter E., Ofek G., Linkowski P., Polonsky K.S., Degaute J.P. Diurnal variations in cardiovascular function and glucose regulation in normotensive humans. Hypertension. 1996;28:863–871. doi: 10.1161/01.hyp.28.5.863.
    1. Blüher M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019;15:288–298. doi: 10.1038/s41574-019-0176-8.
    1. Bogardus C., LaGrange B.M., Horton E.S., Sims E.A. Comparison of carbohydrate-containing and carbohydrate-restricted hypocaloric diets in the treatment of obesity. J. Clin. Invest. 1981;68:399–404. doi: 10.1172/jci110268.
    1. Bradley D., Conte C., Mittendorfer B., Eagon J.C., Varela J.E., Fabbrini E., Gastaldelli A., Chambers K.T., Su X., Okunade A., et al. Gastric bypass and banding equally improve insulin sensitivity and β cell function. J. Clin. Invest. 2012;122:4667–4674. doi: 10.1172/jci64895.
    1. Calle E.E., Thun M.J., Petrelli J.M., Rodriguez C., Heath C.W., Jr. Body-mass index and mortality in a prospective cohort of U.S. adults. N. Engl. J. Med. 1999;341:1097–1105. doi: 10.1056/nejm199910073411501.
    1. Carlson O., Martin B., Stote K.S., Golden E., Maudsley S., Najjar S.S., Ferrucci L., Ingram D.K., Longo D.L., Rumpler W.V., et al. Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metabolism. 2007;56:1729–1734. doi: 10.1016/j.metabol.2007.07.018.
    1. Caron A., Lee S., Elmquist J., Gautron L.J.N.r.N. Leptin and brain-adipose crosstalks. Nat. Rev. Neurosci. 2018;19:153–165. doi: 10.1038/nrn.2018.7.
    1. Chaix A., Lin T., Le H.D., Chang M.W., Panda S. Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab. 2019;29:303–319.e4. doi: 10.1016/j.cmet.2018.08.004.
    1. Chow L.S., Manoogian E.N.C., Alvear A., Fleischer J.G., Thor H., Dietsche K., Wang Q., Hodges J.S., Esch N., Malaeb S., et al. Time-restricted eating effects on body composition and metabolic measures in humans who are overweight: a feasibility study. Obesity. 2020;28:860–869. doi: 10.1002/oby.22756.
    1. Cienfuegos S., Gabel K., Kalam F., Ezpeleta M., Wiseman E., Pavlou V., Lin S., Oliveira M.L., Varady K.A. Effects of 4- and 6-h time-restricted feeding on weight and cardiometabolic health: a randomized controlled trial in adults with obesity. Cell Metab. 2020;32:366–378.e3. doi: 10.1016/j.cmet.2020.06.018.
    1. Cioffi I., Evangelista A., Ponzo V., Ciccone G., Soldati L., Santarpia L., Contaldo F., Pasanisi F., Ghigo E., Bo S. Intermittent versus continuous energy restriction on weight loss and cardiometabolic outcomes: a systematic review and meta-analysis of randomized controlled trials. J. Transl. Med. 2018;16:371. doi: 10.1186/s12967-018-1748-4.
    1. Delahaye L.B., Bloomer R.J., Butawan M.B., Wyman J.M., Hill J.L., Lee H.W., Liu A.C., McAllan L., Han J.C., van der Merwe M. Time-restricted feeding of a high-fat diet in male C57BL/6 mice reduces adiposity but does not protect against increased systemic inflammation. Appl. Physiol. Nutr. Metab. 2018;43:1033–1042. doi: 10.1139/apnm-2017-0706.
    1. de Cabo R., Mattson M.P. Effects of Intermittent Fasting on Health, Aging, and disease. N. Engl. J. Med. 2020;382:978. doi: 10.1056/NEJMx200002.
    1. Friedman J.M., Halaas J.L. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–770. doi: 10.1038/27376.
    1. Gabel K., Hoddy K.K., Haggerty N., Song J., Kroeger C.M., Trepanowski J.F., Panda S., Varady K.A. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: a pilot study. Nutr. Healthy Aging. 2018;4:345–353. doi: 10.3233/nha-170036.
    1. Gabel K., Hoddy K.K., Varady K.A. Safety of 8-h time restricted feeding in adults with obesity. Appl. Physiol. Nutr. Metab. 2019;44:107–109. doi: 10.1139/apnm-2018-0389.
    1. Gabel K., Marcell J., Cares K., Kalam F., Cienfuegos S., Ezpeleta M., Varady K.A. Effect of time restricted feeding on the gut microbiome in adults with obesity: a pilot study. Nutr. Health. 2020;26:79–85. doi: 10.1177/0260106020910907.
    1. Gabel K., Varady K.A. Current research: effect of time restricted eating on weight and cardiometabolic health. J. Physiol. 2022;600:1313–1326. doi: 10.1113/jp280542.
    1. Gill S., Panda S. A smartphone app reveals erratic diurnal eating patterns in humans that can Be modulated for health benefits. Cell Metab. 2015;22:789–798. doi: 10.1016/j.cmet.2015.09.005.
    1. Guidelines For managing overweight and obesity in adults. Preface to the Expert Panel Report (comprehensive version which includes systematic evidence review, evidence statements, and recommendations) Obesity. 2013;22:S40. doi: 10.1002/oby.20822.
    1. Hall K.D., Bemis T., Brychta R., Chen K.Y., Courville A., Crayner E.J., Goodwin S., Guo J., Howard L., Knuth N.D., et al. Calorie for calorie, dietary fat restriction results in more body fat loss than carbohydrate restriction in people with obesity. Cell Metab. 2015;22:427–436. doi: 10.1016/j.cmet.2015.07.021.
    1. Harvie M., Wright C., Pegington M., McMullan D., Mitchell E., Martin B., Cutler R.G., Evans G., Whiteside S., Maudsley S., et al. The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br. J. Nutr. 2013;110:1534–1547. doi: 10.1017/s0007114513000792.
    1. Hutchison A.T., Liu B., Wood R.E., Vincent A.D., Thompson C.H., O'Callaghan N.J., Wittert G.A., Heilbronn L.K. Effects of intermittent versus continuous energy intakes on insulin sensitivity and metabolic risk in women with overweight. Obesity. 2019;27:50–58. doi: 10.1002/oby.22345.
    1. Hutchison A.T., Regmi P., Manoogian E.N.C., Fleischer J.G., Wittert G.A., Panda S., Heilbronn L.K. Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: a randomized crossover trial. Obesity. 2019;27:724–732. doi: 10.1002/oby.22449.
    1. Jamshed H., Beyl R.A., Della Manna D.L., Yang E.S., Ravussin E., Peterson C.M. Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients. 2019;11:E1234. doi: 10.3390/nu11061234.
    1. Jayanama K., Putadechakun S., Srisuwarn P., Vallibhakara S.A.O., Chattranukulchai Shantavasinkul P., Sritara C., Kantachuvesiri S., Komindr S. Evaluation of body composition in hemodialysis Thai patients: comparison between two models of bioelectrical impedance analyzer and dual-energy X-ray absorptiometry. J. Nutr. Metab. 2018:4537623. doi: 10.1155/2018/4537623.
    1. Jensen M.D., Ryan D.H., Apovian C.M., Ard J.D., Comuzzie A.G., Donato K.A., Hu F.B., Hubbard V.S., Jakicic J.M., Kushner R.F., et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American college of cardiology/American heart association task force on practice guidelines and the obesity society. Circulation. 2014;129:S102–S138. doi: 10.1161/01.cir.0000437739.71477.
    1. Johnston J.G., Speed J.S., Jin C., Pollock D.M. Loss of endothelin B receptor function impairs sodium excretion in a time- and sex-dependent manner. Am. J. Physiol. Renal Physiol. 2016;311 doi: 10.1152/ajprenal.00103. F991–f998.
    1. Kang S.M., Yoon J.W., Ahn H.Y., Kim S.Y., Lee K.H., Shin H., Choi S.H., Park K.S., Jang H.C., Lim S. Android fat depot is more closely associated with metabolic syndrome than abdominal visceral fat in elderly people. PLoS One. 2011;6:e27694. doi: 10.1371/journal.pone.0027694.
    1. Karras S.N., Koufakis T., Adamidou L., Antonopoulou V., Karalazou P., Thisiadou K., Mitrofanova E., Mulrooney H., Petróczi A., Zebekakis P., et al. Effects of orthodox religious fasting versus combined energy and time restricted eating on body weight, lipid concentrations and glycaemic profile. Int. J. Food Sci. Nutr. 2021;72:82–92. doi: 10.1080/09637486.2020.1760218.
    1. Kelli H.M., Corrigan F.E., 3rd, Heinl R.E., Dhindsa D.S., Hammadah M., Samman-Tahhan A., Sandesara P., O'Neal W.T., Al Mheid I., Ko Y.A., et al. Relation of changes in body fat distribution to oxidative stress. Am. J. Cardiol. 2017;120:2289–2293. doi: 10.1016/j.amjcard.2017.08.053.
    1. Kesztyüs D., Cermak P., Gulich M., Kesztyüs T. Adherence to time-restricted feeding and impact on abdominal obesity in primary Care patients: results of a pilot study in a pre–post design. Nutrients. 2019;11:E2854. doi: 10.3390/nu11122854.
    1. Kord-Varkaneh H., Fatahi S., Alizadeh S., Ghaedi E., Shab-Bidar S. Association of serum leptin with all-cause and disease specific mortality: a meta-analysis of prospective observational studies. Horm. Metab. Res. 2018;50:509–520. doi: 10.1055/a-0620-8671.
    1. Kraemer F.B., Ginsberg H.N. Gerald M. Reaven, MD: demonstration of the central role of insulin resistance in type 2 diabetes and cardiovascular disease. Diabetes Care. 2014;37:1178–1181. doi: 10.2337/dc13-2668.
    1. Leal-Cerro A., Garcia-Luna P.P., Astorga R., Parejo J., Peino R., Dieguez C., Casanueva F.F., metabolism Serum leptin levels in male marathon athletes before and after the marathon run. J. Clin. Endocrinol. Metab. 1998;83:2376–2379. doi: 10.1210/jcem.83.7.4959.
    1. Lewington S., Clarke R., Qizilbash N., Peto R., Collins R., Prospective Studies Collaboration Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet (London, England) 2002;360:1903–1913. doi: 10.1016/s0140-6736(02)11911-8.
    1. Longo V.D., Mattson M.P. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014;19:181–192. doi: 10.1016/j.cmet.2013.12.008.
    1. Longo V.D., Panda S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 2016;23:1048–1059. doi: 10.1016/j.cmet.2016.06.001.
    1. Lowe D.A., Wu N., Rohdin-Bibby L., Moore A.H., Kelly N., Liu Y.E., Philip E., Vittinghoff E., Heymsfield S.B., Olgin J.E., et al. Effects of time-restricted eating on weight loss and other metabolic parameters in women and men with overweight and obesity: the TREAT randomized clinical trial. JAMA Intern. Med. 2020;180:1491–1499. doi: 10.1001/jamainternmed.2020.4153.
    1. Lu Y., Hajifathalian K., Woodward M., Danaei G., Rimm E.B., Danaei G. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1·8 million participants. Lancet (London, England) 2014;383:970–983. doi: 10.1016/s0140-6736(13)61836-x.
    1. Lundell L.S., Parr E.B., Devlin B.L., Ingerslev L.R., Altıntaş A., Sato S., Sassone-Corsi P., Barrès R., Zierath J.R., Hawley J.A. Time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression. Nat. Commun. 2020;11:4643. doi: 10.1038/s41467-020-18412-w.
    1. Maffei M., Halaas J., Ravussin E., Pratley R.E., Lee G.H., Zhang Y., Fei H., Kim S., Lallone R., Ranganathan S. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med. 1995;1:1155–1161. doi: 10.1038/nm1195-1155.
    1. Magkos F., Fraterrigo G., Yoshino J., Luecking C., Kirbach K., Kelly S.C., de Las Fuentes L., He S., Okunade A.L., Patterson B.W., Klein S. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab. 2016;23:591–601. doi: 10.1016/j.cmet.2016.02.005.
    1. Mantzoros C.S., Qu D., Frederich R.C., Susulic V.S., Lowell B.B., Maratos-Flier E., Flier J.S. Activation of beta(3) adrenergic receptors suppresses leptin expression and mediates a leptin-independent inhibition of food intake in mice. Diabetes. 1996;45:909–914. doi: 10.2337/diab.45.7.909.
    1. Martens C.R., Rossman M.J., Mazzo M.R., Jankowski L.R., Nagy E.E., Denman B.A., Richey J.J., Johnson S.A., Ziemba B.P., Wang Y., et al. Short-term time-restricted feeding is safe and feasible in non-obese healthy midlife and older adults. GeroScience. 2020;42:667–686. doi: 10.1007/s11357-020-00156-6.
    1. Mattson M.P., Longo V.D., Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 2017;39:46–58. doi: 10.1016/j.arr.2016.10.005.
    1. McAllister M.J., Pigg B.L., Renteria L.I., Waldman H.S. Time-restricted feeding improves markers of cardiometabolic health in physically active college-age men: a 4-week randomized pre-post pilot study. Nutr. Res. 2020;75:32–43. doi: 10.1016/j.nutres.2019.12.001.
    1. Meydani S.N., Das S.K., Pieper C.F., Lewis M.R., Klein S., Dixit V.D., Gupta A.K., Villareal D.T., Bhapkar M., Huang M., et al. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans. Aging. 2016;8:1416–1431. doi: 10.18632/aging.100994.
    1. Moro T., Tinsley G., Bianco A., Marcolin G., Pacelli Q.F., Battaglia G., Palma A., Gentil P., Neri M., Paoli A. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Transl. Med. 2016;14:290. doi: 10.1186/s12967-016-1044-0.
    1. Moro T., Tinsley G., Longo G., Grigoletto D., Bianco A., Ferraris C., Guglielmetti M., Veneto A., Tagliabue A., Marcolin G., Paoli A. Time-restricted eating effects on performance, immune function, and body composition in elite cyclists: a randomized controlled trial. J. Int. Soc. Sports Nutr. 2020;17:65. doi: 10.1186/s12970-020-00396-z.
    1. Neseliler S., Hu W., Larcher K., Zacchia M., Dadar M., Scala S.G., Lamarche M., Zeighami Y., Stotland S.C., Larocque M., et al. Neurocognitive and hormonal correlates of voluntary weight loss in humans. Cell Metab. 2019;29:39–49.e4. doi: 10.1016/j.cmet.2018.09.024.
    1. Ni Mhurchu C., Rodgers A., Pan W.H., Gu D.F., Woodward M., Asia Pacific Cohort Studies Collaboration Body mass index and cardiovascular disease in the Asia-Pacific Region: an overview of 33 cohorts involving 310 000 participants. Int. J. Epidemiol. 2004;33:751–758. doi: 10.1093/ije/dyh163.
    1. Parr E.B., Devlin B.L., Radford B.E., Hawley J.A. A delayed morning and earlier evening time-restricted feeding protocol for improving glycemic control and dietary adherence in men with overweight/obesity: a randomized controlled trial. Nutrients. 2020;12:E505. doi: 10.3390/nu12020505.
    1. Pasiakos S.M., Cao J.J., Margolis L.M., Sauter E.R., Whigham L.D., McClung J.P., Rood J.C., Carbone J.W., Combs G.F., Jr., Young A.J. Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial. 2013;27:3837–3847. doi: 10.1096/fj.13-230227.
    1. Patterson R.E., Sears D.D. Metabolic effects of intermittent fasting. Annu. Rev. Nutr. 2017;37:371–393. doi: 10.1146/annurev-nutr-071816-064634.
    1. Peeke P.M., Greenway F.L., Billes S.K., Zhang D., Fujioka K. Effect of time restricted eating on body weight and fasting glucose in participants with obesity: results of a randomized, controlled, virtual clinical trial. Nutr. Diabetes. 2021;11:6. doi: 10.1038/s41387-021-00149-0.
    1. Persson S.U. Blood pressure reactions to insulin treatment in patients with type 2 diabetes. Int. J. Angiol. 2007;16:135–138. doi: 10.1055/s-0031-1278267.
    1. Poggiogalle E., Jamshed H., Peterson C.M. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism. 2018;84:11–27. doi: 10.1016/j.metabol.2017.11.017.
    1. Rabast U., Vornberger K.H., Ehl M. Loss of weight, sodium and water in obese persons consuming a high- or low-carbohydrate diet. Ann. Nutr. Metab. 1981;25:341–349. doi: 10.1159/000176515.
    1. Ravussin E., Beyl R.A., Poggiogalle E., Hsia D.S., Peterson C.M. Early time-restricted feeding reduces appetite and increases fat oxidation but does not Affect energy expenditure in humans. Obesity. 2019;27:1244–1254. doi: 10.1002/oby.22518.
    1. Redman L.M., Smith S.R., Burton J.H., Martin C.K., Il'yasova D., Ravussin E. Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metab. 2018;27:805–815.e4. doi: 10.1016/j.cmet.2018.02.019.
    1. Ritz P., Sallé A., Audran M., Rohmer V. Comparison of different methods to assess body composition of weight loss in obese and diabetic patients. Diabetes Res. Clin. Pract. 2007;77:405–411. doi: 10.1016/j.diabres.2007.01.007.
    1. Rosenbaum M., Goldsmith R., Bloomfield D., Magnano A., Weimer L., Heymsfield S., Gallagher D., Mayer L., Murphy E., Leibel R.L. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J. Clin. Invest. 2005;115:3579–3586. doi: 10.1172/jci25977.
    1. Rosenbaum M., Murphy E.M., Heymsfield S.B., Matthews D.E., Leibel R.L., metabolism Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. J. Clin. Endocrinol. Metab. 2002;87:2391–2394. doi: 10.1210/jcem.87.5.8628.
    1. Rozing M.P., Westendorp R.G.J., de Craen A.J.M., Frölich M., Heijmans B.T., Beekman M., Wijsman C., Mooijaart S.P., Blauw G.J., Slagboom P.E., van Heemst D., Leiden Longevity Study LLS Group Low serum free triiodothyronine levels mark familial longevity: the Leiden Longevity Study. J. Gerontol. A Biol. Sci. Med. Sci. 2010;65:365–368. doi: 10.1093/gerona/glp200.
    1. Santanasto A.J., Glynn N.W., Newman M.A., Taylor C.A., Brooks M.M., Goodpaster B.H., Newman A.B. Impact of weight loss on physical function with changes in strength, muscle mass, and muscle fat infiltration in overweight to moderately obese older adults: a randomized clinical trial. J. Obes. 2011:516576. doi: 10.1155/2011/516576.
    1. Schafer A.L. Decline in bone mass during weight loss: a cause for concern? J. Bone Miner. Res. 2016;31:36–39. doi: 10.1002/jbmr.2754.
    1. Stote K.S., Baer D.J., Spears K., Paul D.R., Harris G.K., Rumpler W.V., Strycula P., Najjar S.S., Ferrucci L., Ingram D.K., et al. A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am. J. Clin. Nutr. 2007;85:981–988. doi: 10.1093/ajcn/85.4.981.
    1. Stratton M.T., Tinsley G.M., Alesi M.G., Hester G.M., Olmos A.A., Serafini P.R., Modjeski A.S., Mangine G.T., King K., Savage S.N., et al. Four weeks of time-restricted feeding combined with resistance training does not differentially influence measures of body composition, muscle performance, resting energy expenditure, and blood biomarkers. Nutrients. 2020;12:E1126. doi: 10.3390/nu12041126.
    1. Sutton E.F., Beyl R., Early K.S., Cefalu W.T., Ravussin E., Peterson C.M. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 2018;27:1212–1221.e3. doi: 10.1016/j.cmet.2018.04.010.
    1. Tinsley G.M., Moore M.L., Graybeal A.J., Paoli A., Kim Y., Gonzales J.U., Harry J.R., VanDusseldorp T.A., Kennedy D.N., Cruz M.R. Time-restricted feeding plus resistance training in active females: a randomized trial. Am. J. Clin. Nutr. 2019;110:628–640. doi: 10.1093/ajcn/nqz126.
    1. NCD Risk Factor Collaboration (NCD-RisC) Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet. 2016;387:1377–1396. doi: 10.1016/S0140-6736(16)30054-X.
    1. Trepanowski J.F., Kroeger C.M., Barnosky A., Klempel M.C., Bhutani S., Hoddy K.K., Gabel K., Freels S., Rigdon J., Rood J., et al. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial. JAMA Intern. Med. 2017;177:930–938. doi: 10.1001/jamainternmed.2017.0936.
    1. Van Cauter E., Polonsky K.S., Scheen A.J. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr. Rev. 1997;18:716–738. doi: 10.1210/edrv.18.5.0317.
    1. Vella K.R., Ramadoss P., Lam F.S., Harris J.C., Ye F.D., Same P.D., O'Neill N.F., Maratos-Flier E., Hollenberg A.N. NPY and MC4R signaling regulate thyroid hormone levels during fasting through both central and peripheral pathways. Cell Metab. 2011;14:780–790. doi: 10.1016/j.cmet.2011.10.009.
    1. Verreijen A.M., Verlaan S., Engberink M.F., Swinkels S., de Vogel-van den Bosch J., Weijs P.J.M. A high whey protein-leucine-and vitamin D-enriched supplement preserves muscle mass during intentional weight loss in obese older adults: a double-blind randomized controlled trial. Am. J. Clin. Nutr. 2015;101:279–286. doi: 10.3945/ajcn.114.090290.
    1. Villareal D.T., Fontana L., Das S.K., Redman L., Smith S.R., Saltzman E., Bales C., Rochon J., Pieper C., Huang M., et al. Effect of two-year caloric restriction on bone metabolism and bone mineral density in non-obese younger adults: a randomized clinical trial. J. Bone Miner. Res. 2016;31:40–51. doi: 10.1002/jbmr.2701.
    1. Wei M., Brandhorst S., Shelehchi M., Mirzaei H., Cheng C.W., Budniak J., Groshen S., Mack W.J., Guen E., Di Biase S., et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci. Transl. Med. 2017;9:eaai8700. doi: 10.1126/scitranslmed.aai8700.
    1. Prospective Studies Collaboration. Lewington S., Clarke R., Halsey J., Collins R., Halsey J., Qizilbash N., Collins R., Peto R. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–1096. doi: 10.1016/s0140-6736(09)60318-4.
    1. Wijayatunga N., Preechavanichwong B., Georgestone K., Dhurandhar E. An effectiveness study of early or late time-restricted feeding on body composition – pilot study. Curr. Dev. Nutr. 2020;4:1701.
    1. Wilkinson M.J., Manoogian E.N.C., Zadourian A., Lo H., Fakhouri S., Shoghi A., Wang X., Fleischer J.G., Navlakha S., Panda S., Taub P.R. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 2020;31:92–104.e5. doi: 10.1016/j.cmet.2019.11.004.
    1. Williams E.P., Mesidor M., Winters K., Dubbert P.M., Wyatt S.B. Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr. Obes. Rep. 2015;4:363–370. doi: 10.1007/s13679-015-0169-4.
    1. Wing R.R., Lang W., Wadden T.A., Safford M., Knowler W.C., Bertoni A.G., Hill J.O., Brancati F.L., Peters A., Wagenknecht L., Look AHEAD Research Group Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011;34:1481–1486. doi: 10.2337/dc10-2415.
    1. World Health Organization Obesity and Overweight.
    1. Emerging Risk Factors Collaboration. Kaptoge S., Wood A.M., Thompson A., Kizer J.R., Nordestgaard B.G., Salomaa V., Woodward M., Collins R., Whitlock G., et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet (London, England) 2011;377:1085–1095. doi: 10.1016/s0140-6736(11)60105-0.
    1. Yannakoulia M., Poulimeneas D., Mamalaki E., Anastasiou C.A. Dietary modifications for weight loss and weight loss maintenance. Metabolism. 2019;92:153–162. doi: 10.1016/j.metabol.2019.01.001.
    1. Yang Y.X., Wang G., Pan X. Peking University Medical Press; 2009. China Food Composition.
    1. Zeb F., Wu X., Chen L., Fatima S., Haq I.U., Chen A., Majeed F., Feng Q., Li M. Effect of time-restricted feeding on metabolic risk and circadian rhythm associated with gut microbiome in healthy males. Br. J. Nutr. 2020;123:1216–1226. doi: 10.1017/s0007114519003428.

Source: PubMed

3
Iratkozz fel