An Intervention with Mineral Water Decreases Cardiometabolic Risk Biomarkers. A Crossover, Randomised, Controlled Trial with Two Mineral Waters in Moderately Hypercholesterolaemic Adults

Laura Toxqui, M Pilar Vaquero, Laura Toxqui, M Pilar Vaquero

Abstract

Water intake is essential for health maintenance and disease prevention. The effects of an intervention with two mineral waters, sodium-bicarbonated mineral water (BW) or control mineral water low in mineral content (CW), on cardiometabolic risk biomarkers were studied. In a randomised-controlled crossover-trial, sixty-four moderately hypercholesterolaemic adults were randomly assigned to consume 1 L/day of either BW (sodium, 1 g/L; bicarbonate, 2 g/L) or CW with the main meals for eight weeks, separated by an eight-week washout period. Blood lipids, lipid oxidation, glucose, insulin, aldosterone, urine pH, urinary electrolytes, blood pressure, body weight, fluid intake, energy, and nutrients from total diet and beverages were determined. Total cholesterol, LDL cholesterol, and glucose decreased (p < 0.01), oxidised LDL tended to decrease (p = 0.073), and apolipoprotein B increased during the intervention, without water type effect. Energy and carbohydrates from beverages decreased since soft drinks and fruit juice consumptions decreased throughout the trial. BW increased urinary pH (p = 0.006) and reduced calcium/creatinine excretion (p = 0.011). Urinary potassium/creatinine decreased with both waters. Consumption of 1 L/day of mineral water with the main meals reduces cardiometabolic risk biomarkers, likely to be attributed to a replacement of soft drinks by water. In addition, BW does not affect blood pressure and exerts a moderate alkalizing effect in the body.

Keywords: cardiometabolic risk; cholesterol; fluid intake; human; randomised controlled trial; sodium-bicarbonated mineral water.

Figures

Figure 1
Figure 1
CONSORT flow diagram showing number of participants through each stage of the randomised crossover trial.

References

    1. Gandy J. Water intake: Validity of population assessment and recommendations. Eur. J. Nutr. 2015;54:11–16. doi: 10.1007/s00394-015-0944-8.
    1. Gandy J. Erratum to: Water intake: Validity of population assessment and recommendations. Eur. J. Nutr. 2015;54:1031. doi: 10.1007/s00394-015-0965-3.
    1. Siener R., Jahnen A., Hesse A. Influence of a mineral water rich in calcium, magnesium and bicarbonate on urine composition and the risk of calcium oxalate crystallization. Eur. J. Clin. Nutr. 2004;58:270–276. doi: 10.1038/sj.ejcn.1601778.
    1. Bohmer H., Muller H., Resch K.L. Calcium supplementation with calcium-rich mineral waters: A systematic review and meta-analysis of its bioavailability. Osteoporos. Int. 2000;11:938–943. doi: 10.1007/s001980070032.
    1. Schoppen S., Perez-Granados A.M., Carbajal A., Oubina P., Sanchez-Muniz F.J., Gomez-Gerique J.A., Vaquero M.P. A sodium-rich carbonated mineral water reduces cardiovascular risk in postmenopausal women. J. Nutr. 2004;134:1058–1063.
    1. Perez-Granados A.M., Navas-Carretero S., Schoppen S., Vaquero M.P. Reduction in cardiovascular risk by sodium-bicarbonated mineral water in moderately hypercholesterolemic young adults. J. Nutr. Biochem. 2010;21:948–953. doi: 10.1016/j.jnutbio.2009.07.010.
    1. Schoppen S., Sanchez-Muniz F.J., Perez-Granados M., Gomez-Gerique J.A., Sarria B., Navas-Carretero S., Vaquero M.P. Does bicarbonated mineral water rich in sodium change insulin sensitivity of postmenopausal women? Nutr. Hosp. 2007;22:538–544.
    1. Schoppen S., Perez-Granados A.M., Carbajal A., Sarria B., Sanchez-Muniz F.J., Gomez-Gerique J.A., Vaquero M.P. Sodium bicarbonated mineral water decreases postprandial lipaemia in postmenopausal women compared to a low mineral water. Br. J. Nutr. 2005;94:582–587. doi: 10.1079/BJN20051515.
    1. Toxqui L., Perez-Granados A.M., Blanco-Rojo R., Vaquero M.P. A sodium-bicarbonated mineral water reduces gallbladder emptying and postprandial lipaemia: A randomised four-way crossover study. Eur. J. Nutr. 2012;51:607–614. doi: 10.1007/s00394-011-0244-x.
    1. Schoppen S., Perez-Granados A.M., Carbajal A., de la Piedra C., Vaquero M.P. Bone remodelling is not affected by consumption of a sodium-rich carbonated mineral water in healthy postmenopausal women. Br. J. Nutr. 2005;93:339–344. doi: 10.1079/BJN20041332.
    1. : U.S. National Institutes of Health. [(accessed on 27 June 2016)]; Available online: .
    1. CONSORT: Transparent Reporting of Trials. [(accessed on 4 April 2016)]. Available online:
    1. Otvos J.D., Mora S., Shalaurova I., Greenland P., Mackey R.H., Goff D.C., Jr. Clinical implications of discordance between low-density lipoprotein cholesterol and particle number. J. Clin. Lipidol. 2011;5:105–113. doi: 10.1016/j.jacl.2011.02.001.
    1. Otvos J.D., Jeyarajah E.J., Cromwell W.C. Measurement issues related to lipoprotein heterogeneity. Am. J. Cardiol. 2002;90:i22–i29. doi: 10.1016/S0002-9149(02)02632-2.
    1. Duffey K.J., Davy B.M. The healthy beverage index is associated with reduced cardiometabolic risk in US adults: A preliminary analysis. J. Acad. Nutr. Diet. 2015;115:1682–1689. doi: 10.1016/j.jand.2015.05.005.
    1. Rodriguez-Ramirez S., de Cosio G.T., Mendez M.A., Tucker K.L., Mendez-Ramirez I., Hernandez-Cordero S., Popkin B.M. A water and education provision intervention modifies the diet in overweight Mexican women in a randomized controlled trial. J. Nutr. 2015;145:1892–1899. doi: 10.3945/jn.115.212852.
    1. Stookey J.D., Constant F., Gardner C.D., Popkin B.M. Replacing sweetened caloric beverages with drinking water is associated with lower energy intake. Obesity. 2007;15:3013–3022. doi: 10.1038/oby.2007.359.
    1. Wang Y.C., Ludwig D.S., Sonneville K., Gortmaker S.L. Impact of change in sweetened caloric beverage consumption on energy intake among children and adolescents. Arch. Pediatr. Adolesc. Med. 2009;163:336–343. doi: 10.1001/archpediatrics.2009.23.
    1. Dhingra R., Sullivan L., Jacques P.F., Wang T.J., Fox C.S., Meigs J.B., D’Agostino R.B., Gaziano J.M., Vasan R.S. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation. 2007;116:480–488. doi: 10.1161/CIRCULATIONAHA.107.689935.
    1. Malik V.S., Hu F.B. Fructose and cardiometabolic health: What the evidence from sugar-sweetened beverages tells us. J. Am. Coll. Cardiol. 2015;66:1615–1624. doi: 10.1016/j.jacc.2015.08.025.
    1. Stanhope K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. 2016;53:52–67. doi: 10.3109/10408363.2015.1084990.
    1. EFSA panel on dietetic products nutrition and allergies Scientific opinion on dietary reference values for water. EFSA J. 2010;8:1459–4507.
    1. Institute of Medicine . Dietary Reference Intakes: Water, Potassium, Sodium, Chloride, and Sulfate. The National Academies Press; Washington, DC, USA: 2005. Water; pp. 73–185.
    1. Adeva M.M., Souto G. Diet-induced metabolic acidosis. Clin. Nutr. 2011;30:416–421. doi: 10.1016/j.clnu.2011.03.008.
    1. Hu J.F., Zhao X.H., Parpia B., Campbell T.C. Dietary intakes and urinary excretion of calcium and acids: A cross-sectional study of women in China. Am. J. Clin. Nutr. 1993;58:398–406.
    1. Frassetto L.A., Todd K.M., Morris R.C., Jr., Sebastian A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr. 1998;68:576–583.
    1. Fagherazzi G., Vilier A., Bonnet F., Lajous M., Balkau B., Boutron-Rualt M.C., Clavel-Chapelon F. Dietary acid load and risk of type 2 diabetes: The E3N-EPIC cohort study. Diabetologia. 2014;57:313–320. doi: 10.1007/s00125-013-3100-0.
    1. Strohle A., Waldmann A., Koschizke J., Leitzmann C., Hahn A. Diet-dependent net endogenous acid load of vegan diets in relation to food groups and bone health-related nutrients: Results from the German vegan study. Ann. Nutr. Metab. 2011;59:117–126. doi: 10.1159/000331572.
    1. Williams R.S., Kozan P., Samocha-Bonet D. The role of dietary acid load and mild metabolic acidosis in insulin resistance in humans. Biochimie. 2015 doi: 10.1016/j.biochi.2015.09.012.
    1. Williams R.S., Heilbronn L.K., Chen D.L., Coster A.C., Greenfield J.R., Samocha-Bonet D. Dietary acid load, metabolic acidosis and insulin resistance—Lessons from cross-sectional and overfeeding studies in humans. Clin. Nutr. 2015 doi: 10.1016/j.clnu.2015.08.002.
    1. Schoppen S., Perez-Granados A.M., Carbajal A., Sarria B., Navas-Carretero S., Vaquero M.P. Sodium-bicarbonated mineral water decreases aldosterone levels without affecting urinary excretion of bone minerals. Int. J. Food Sci. Nutr. 2005;59:347–355. doi: 10.1080/09637480701560308.
    1. Toxqui L., Vaquero M.P. Aldosterone changes after consumption of a sodium-bicarbonated mineral water in humans. A four-way randomized controlled trial. J. Physiol. Biochem. 2016 doi: 10.1007/s13105-016-0502-8.

Source: PubMed

3
Iratkozz fel