Comparison of whole blood and peripheral blood mononuclear cell gene expression for evaluation of the perioperative inflammatory response in patients with advanced heart failure

Galyna Bondar, Martin Cadeiras, Nicholas Wisniewski, Jetrina Maque, Jay Chittoor, Eleanor Chang, Maral Bakir, Charlotte Starling, Khurram Shahzad, Peipei Ping, Elaine Reed, Mario Deng, Galyna Bondar, Martin Cadeiras, Nicholas Wisniewski, Jetrina Maque, Jay Chittoor, Eleanor Chang, Maral Bakir, Charlotte Starling, Khurram Shahzad, Peipei Ping, Elaine Reed, Mario Deng

Abstract

Background: Heart failure (HF) prevalence is increasing in the United States. Mechanical Circulatory Support (MCS) therapy is an option for Advanced HF (AdHF) patients. Perioperatively, multiorgan dysfunction (MOD) is linked to the effects of device implantation, augmented by preexisting HF. Early recognition of MOD allows for better diagnosis, treatment, and risk prediction. Gene expression profiling (GEP) was used to evaluate clinical phenotypes of peripheral blood mononuclear cells (PBMC) transcriptomes obtained from patients' blood samples. Whole blood (WB) samples are clinically more feasible, but their performance in comparison to PBMC samples has not been determined.

Methods: We collected blood samples from 31 HF patients (57±15 years old) undergoing cardiothoracic surgery and 7 healthy age-matched controls, between 2010 and 2011, at a single institution. WB and PBMC samples were collected at a single timepoint postoperatively (median day 8 postoperatively) (25-75% IQR 7-14 days) and subjected to Illumina single color Human BeadChip HT12 v4 whole genome expression array analysis. The Sequential Organ Failure Assessment (SOFA) score was used to characterize the severity of MOD into low (≤ 4 points), intermediate (5-11), and high (≥ 12) risk categories correlating with GEP.

Results: Results indicate that the direction of change in GEP of individuals with MOD as compared to controls is similar when determined from PBMC versus WB. The main enriched terms by Gene Ontology (GO) analysis included those involved in the inflammatory response, apoptosis, and other stress response related pathways. The data revealed 35 significant GO categories and 26 pathways overlapping between PBMC and WB. Additionally, class prediction using machine learning tools demonstrated that the subset of significant genes shared by PBMC and WB are sufficient to train as a predictor separating the SOFA groups.

Conclusion: GEP analysis of WB has the potential to become a clinical tool for immune-monitoring in patients with MOD.

Conflict of interest statement

Competing Interests: The authors declare that they have no competing interests.

Figures

Figure 1. Variability of methodologies in the…
Figure 1. Variability of methodologies in the processing of gene expression in WB and PBMC.
Figure 2. Flowchart of data analysis.
Figure 2. Flowchart of data analysis.
Figure 3. Clustered heatmap of the overlapping…
Figure 3. Clustered heatmap of the overlapping 333 genes in WB and PBMC shows highly correlated gene expression patterns.
Figure 4. RT-qPCR validation of three differentially…
Figure 4. RT-qPCR validation of three differentially expressed genes within PBMC and WB subgroups, within SOFA groups.
Darker colors correspond to higher magnitude of fold change. Fold changes showed similar patterns between all 10 genes, 9 of which are down-regulated, and 1 of which is up-regulated. 7 of 10 genes showed similar patterns between PBMC and WB and also within SOFA score groups according to our microarray and PCR results. 2 of 10 genes (IL11RA and GRB10) show an opposite result in HIGH PCR (PBMC) and low/med array (WB) correspondingly. Only 1 gene, MAP4K1, shows an opposite result between SOFA score groups.

References

    1. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson L, et al. (2012) Long-term mechanical circulatory support (destination therapy): on track to compete with heart transplantation? J Thorac Cardiovasc Surg. Sep 144(3):584–603 discussion 597–8 doi:10.1016/j.jtcvs.2012.05.044.Epub2012Jul15. 22795459; PubMed Central PMCID: PMC3443856
    1. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, et al. (2014) Sixth INTERMACS annual report: A 10,000-patient database. J Heart Lung Transplant. 2014 Jun 33(6):555–64 doi:10.1016/j.healun.2014.04.010.
    1. Barnes K (2008) Complications in patients with ventricular assist devices. Dimens Crit Care Nurs. 2008 Nov-Dec;27(6):233–41; quiz 242-3. doi:10.1097/01.DCC.0000338867.24293.20. Review. PubMed PMID: 18953188.
    1. Yndestad A, Damås JK, Oie E, Ueland T, Gullestad L, et al. (2006) Systemic inflammation in heart failure-the whys and wherefores. Heart Fail Rev. 2006. Mar;11(1):83–92. Review. PubMed PMID: 16819581.
    1. Shahzad K, Aziz QA, Leva JP, Cadeiras M, Ho EK, et al. (2010) New-onset graft dysfunction after heart transplantation—incidence and mechanism-related outcomes. J Heart Lung Transplant. 2011 Feb 30(2):194–203 doi:10.1016/j.healun.2010.08.026.Epub2010Oct16. 20952209
    1. Deng MC, Edwards LB, Hertz MI, Rowe AW, Keck BM, et al. (2005) International Society for Heart and Lung Transplantation. Mechanical circulatory support device database of the International Society for Heart and Lung Transplantation: third annual report-2005. J Heart Lung Transplant. 2005 Sep 24(9):1182–7 PubMed PMID 16143231
    1. Redmond A, McDevitt M, Barnes S (2004) Acute renal failure: recognition and treatment in ward patients. Nurs Stand. 2004 Feb 11–17;18(22):46–53; quiz 54–5.Review. PubMed PMID: 14999985.
    1. Redmond A, McDevitt M, Barnes S. (2004) Acute renal failure: recognition and treatment in ward patients. Nurs Stand. 2004 18(22):46–53.
    1. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, et al. (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996 Jul; 22(7):707–10 PubMed PMID 8844239
    1. Xie L, Weichel B, Ohm JE, Zhang K (2011) An integrative analysis of DNA methylation and RNA-Seq data for human heart, kidney and liver. BMC Syst Biol. 2011 Dec 3 5 Suppl 3 S4 doi:;10.1186/1752-0509-5-S3-S4.Epub2011Dec23.PubMedMID:22784623PubMedCentralPMCID:PMC3287572.
    1. Munch EM, Harris RA, Mohammad M, Benham AL, Pejerrey SM, et al. (2013) Transcriptome Profiling of microRNA by Next-Gen Deep Sequencing Reveals Known and Novel miRNA Species in the Lipid Fraction of Human Breast Milk. PLoS One. 2013;8(2):e50564 doi:10.1371/journal.pone.0050564.Epub2013Feb13. PubMed PMID 23418415; PubMed Central PMCID: PMC3572105
    1. Cine N, Limtrakul P, Sunnetci D, Nagy B, Savli H (2013) Effects of curcumin on global gene expression profiles in the highly invasive human breast carcinoma cell line MDA-MB 231: A gene network-based microarray analysis. Exp Ther Med. 2013 Jan;5(1):23–27. Epub 2012 Oct 19. PubMed PMID: 23251236; PubMed Central PMCID: PMC3524226.
    1. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, et al. (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci U S A. 2003 May 13;100(10):5974–9. Epub 2003 Apr 24. PubMed PMID: 12714683; PubMed Central PMCID: PMC156311.
    1. Mehra MR, Uber PA, Walther D, Vesely M, Wohlgemuth JG, et al. (2006) Gene expression profiles and B-type natriuretic peptide elevation in heart transplantation: more than a hemodynamic marker. Circulation. 2006 Jul 4;114(1 Suppl):I21–6. PubMed PMID: 16820574.
    1. Erickson LM, Pan F, Ebbs A, Kobayashi M, Jiang H (2003) Microarray-based gene expression profiles of allograft rejection and immunosuppression in the rat heart transplantation model. Transplantation. 2003 Aug 15 76(3):582–8 12923448
    1. Joehanes R, Johnson AD, Barb JJ, Raghavachari N, Liu P, et al. (2012) Gene expression analysis of whole blood, peripheral blood mononuclear cells, and lymphoblastoid cell lines from the Framingham Heart Study. Physiol Genomics. 2012 Jan 18 44(1):59–75 doi:10.1152/physiolgenomics.00130.2011.Epub2011Nov1. 22045913; PubMed Central PMCID: PMC3289123
    1. Draghici S, Khatri P, Tarca AL, Amin K, Done A, et al. (2007) A systems biology approach for pathway level analysis. Genome Res. 2007 Oct;17(10):1537–45. Epub 2007 Sep 4. PubMed PMID: 17785539; PubMed Central PMCID:PMC1987343.
    1. Whitney AR, Diehn M, Popper SJ, Alizadeh AA, Boldrick JC, et al. (2003) Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1896–901. Epub 2003 Feb 10. PubMed PMID: 12578971; PubMed Central PMCID: PMC149930.
    1. Debey S, Schoenbeck U, Hellmich M, Gathof BS, Pillai R, et al. (2004) Comparison of different isolation techniques prior gene expression profiling of blood derived cells: impact on physiological responses, on overall expression and the role of different cell types. Pharmacogenomics J. 2004 4(3):193–207 15037859
    1. Feezor RJ, Baker HV, Mindrinos M, Hayden D, Tannahill CL, et al. (2004) Inflammation and Host Response to Injury, Large-Scale Collaborative Research Program. Whole blood and leukocyte RNA isolation for gene expression analyses. Physiol Genomics. 2004 Nov 17 19(3):247–54 PubMed PMID: 15548831
    1. Palmer C, Diehn M, Alizadeh AA, Brown PO (2006) Cell-type specific gene expression profiles of leukocytes in human peripheral blood. BMC Genomics. 2006 May 16 7:115 16704732; PubMed Central PMCID: PMC1479811
    1. Min JL, Barrett A, Watts T, Pettersson FH, Lockstone HE, et al. (2010) Variability of gene expression profiles in human blood and lymphoblastoid cell lines. BMC Genomics. 2010 Feb 8 11:96 doi:10.1186/1471-2164-11-96. 20141636; PubMed Central PMCID: PMC2841682
    1. Yentis SM, Rowbottom AW, Riches PG (1995) Detection of cytoplasmic IL-1 beta in peripheral blood mononuclear cells from intensive care unit (ICU) patients. Clin Exp Immunol. 1995 May 100(2):330–5 PubMed PMID: 7743673; PubMed Central PMCID:PMC1534328
    1. Cadeiras M, Nagaraj H, Kirklin JK, Holman WL, Pamboukian SV, et al. (2011) Use of a vascular plug to percutaneously occlude the outflow conduit of a dysfunctional left ventricular assist device. J Heart Lung Transplant. 2011 Jun 30(6):733–4 doi:10.1016/j.healun.2011.01.723.Epub2011Mar26. PubMed PMID: 21441042
    1. Cabré L, Mancebo J, Solsona JF, Saura P, Gich I, et al. (2005) Bioethics Working Group of the SEMICYUC. Multicenter study of the multiple organ dysfunction syndrome in intensive care units: the usefulness of Sequential Organ Failure Assessment scores in decision making. Intensive Care Med. 2005 Jul;31(7):927–33. Epub 2005 Apr 26. PubMed PMID: 15856171.
    1. Dobbin KK, Beer DG, Meyerson M, Yeatman TJ, Gerald WL, et al. (2005) Interlaboratory comparability study of cancer gene expression analysis using oligonucleotide microarrays. Clin Cancer Res. 2005 Jan 15;11(2 Pt 1):565–72 15701842
    1. Shahzad K, Cadeiras M, Memon S, Zeeberg B, Klingler T, et al. (2010) Gene Expression Signatures of Peripheral Blood Mononuclear Cells during the Early Post-Transplant Period in Patients Developing Cardiac Allograft Vasculopathy. J Transplant. 10.1155/2010/719696.Epub2010Dec28. PubMed PMID: 21234308; PubMed Central PMCID: PMC3018628
    1. Jison ML, Munson PJ, Barb JJ, Suffredini AF, Talwar S, et al. (2004) Blood mononuclear cell gene expression profiles characterize the oxidant, hemolytic, and inflammatory stress of sickle cell disease. Blood. 2004 Jul 1;104(1):270–80. Epub 2004 Mar 18. PubMed PMID: 15031206.
    1. Burczynski ME, Twine NC, Dukart G, Marshall B, Hidalgo M, et al. (2005) Transcriptional profiles in peripheral blood mononuclear cells prognostic of clinical outcomes in patients with advanced renal cell carcinoma. Clin Cancer Res. 2005 Feb 1 11(3):1181–9 PubMed PMID: 15709187
    1. Rainen L, Oelmueller U, Jurgensen S, Wyrich R, Ballas C, et al. (2002) Stabilization of mRNA expression in whole blood samples. Clin Chem. 2002 Nov 48(11):1883–90 PubMed PMID 12406972
    1. Raghavachari N, Xu X, Munson PJ, Gladwin MT (2009) Characterization of whole blood gene expression profiles as a sequel to globin mRNA reduction in patients with sickle cell disease. PLoS One. 2009 Aug 3; 4(8):e6484 doi:10.1371/journal.pone.0006484. 19649296; PubMed Central PMCID: PMC2714456
    1. (2003) An Analysis of Blood Processing Methods to Prepare Samples for GeneChip Expression Profiling. Affymetrix Technical Note.
    1. Debey-Pascher S, Hofmann A, Kreusch F, Schuler G, Schuler-Thurner B, et al. (2011) RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis. J Mol Diagn. 2011 Jul; 13(4):452–60 doi:10.1016/j.jmoldx.2011.03.006. 21704280; PubMed Central PMCID: PMC3123794
    1. (2003) Globin Reduction Protocol: A Method for Processing Whole Blood RNA Samples for Improved Array Results. Affymetrix Technical Note.
    1. Globin RNA Reduction in Blood Samples. A Quintiles Company.
    1. Rainen L, Oelmueller U, Jurgensen S, Wyrich R, Ballas C, et al. (2002) Stabilization of mRNA expression in whole blood samples. Clin Chem. 2002 Nov; 48(11):1883–90 PubMed PMID: 12406972
    1. Li L, Ying L, Naesens M, Xiao W, Sigdel T, et al. (2008) Interference of globin genes with biomarker discovery for allograft rejection in peripheral blood samples. Physiol Genomics. 2008 Jan 17;32(2):190–7. Epub 2007 Oct 30. PubMed PMID: 17971501.
    1. Kotz KT, Xiao W, Miller-Graziano C, Qian WJ, Russom A, et al. (2010) Inflammation and the Host Response to Injury Collaborative Research Program. Clinical microfluidics for neutrophil genomics and proteomics. Nat Med. 2010 Sep; 16(9):1042–7 doi:10.1038/nm.2205.Epub2010Aug29. PubMed PMID: 20802500; PubMed Central PMCID: PMC3136804
    1. Rosenbach AE, Koria P, Goverman J, Kotz KT, Gupta A, et al. (2011) Microfluidics for T- lymphocyte cell separation and inflammation monitoring in burn patients. Clin Transl Sci. 2011 Feb; 4(1):63–8 doi:10.1111/j.1752-8062.2010.00255.x. PubMed PMID: 21348958; PubMed Central PMCID:PMC3057059
    1. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, et al. (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996 Jul 22(7):707–10 PubMed PMID 8844239
    1. Shahzad K, Latif F, Akashi H, Kato TS, Sinha A, et al. (2011). Cardiac Support and Multiorgan Dysfunction Syndrome, Ventricular Assist Devices, Dr. Jeffrey Shuhaiber (Ed.), ISBN: 978-953-307-164-0, InTech, Available from:
    1. Deng MC, Elashoff B, Pham MX, Teuteberg JJ, Kfoury AG, et al. (2014) IMAGE Study Group. Utility of gene expression profiling score variability to predict clinical events in heart transplant recipients. Transplantation. 2014 Mar 27 97(6):708–14 doi:[]10.1097/01.TP.0000443897.29951.cf.PMID:24637869PubMed-indexedforMEDLINE.
    1. Pham MX, Teuteberg JJ, Kfoury AG, Starling RC, Deng MC, et al. (2010) for the IMAGE Study Group. Gene Expression Profiling for Rejection Surveillance After Cardiac Transplantation. N Engl J Med. 2010 362:1890–1900.
    1. Sinha A, Shahzad K, Latif F, Cadeiras M, Von Bayern MP, et al. (2010) Peripheral blood mononuclear cell transcriptome profiles suggest T-cell immunosuppression after uncomplicated mechanical circulatory support device surgery. Hum Immunol. 2010 Feb 71(2):164–9 doi:10.1016/j.humimm.2009.10.012.
    1. Starling RC, Pham M, Valantine H, Miller L, Eisen H, et al. (2007) Molecular testing in the management of cardiac transplant recipients: initial clinical experience. J Heart Lung Transplant. 2007;26:204.
    1. Genespring Manual12.5. Agilent Technologies.
    1. Zeeberg BR, Qin H, Narasimhan S, Sunshine M, Cao H, et al. (2005) High-throughput GoMiner, an ‘industrial-strength’ integrative gene ontology tool for interpretation of multiple-microarray experiments, with application to studies of Common Variable Immune Deficiency (CVID) BMC Bioinformatics. 2005;6, article 168
    1. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, et al. (2004) Gene Ontology Consortium. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D258–61. PubMed PMID: 14681407; PubMed Central PMCID: PMC308770.
    1. Weinstein JN, Myers TG, O'Connor PM, Friend SH, Fornace AJ Jr, et al. (1997) An information-intensive approach to the molecular pharmacology of cancer. Science. 1997 Jan 17; 275(5298):343–9 PubMed PMID: 8994024

Source: PubMed

3
Iratkozz fel