No Effects of Cognitive Remediation on Cerebral White Matter in Individuals at Ultra-High Risk for Psychosis-A Randomized Clinical Trial

Tina D Kristensen, Bjørn H Ebdrup, Carsten Hjorthøj, René C W Mandl, Jayachandra M Raghava, Jens Richardt M Jepsen, Birgitte Fagerlund, Louise B Glenthøj, Christina Wenneberg, Kristine Krakauer, Christos Pantelis, Birte Y Glenthøj, Merete Nordentoft, Tina D Kristensen, Bjørn H Ebdrup, Carsten Hjorthøj, René C W Mandl, Jayachandra M Raghava, Jens Richardt M Jepsen, Birgitte Fagerlund, Louise B Glenthøj, Christina Wenneberg, Kristine Krakauer, Christos Pantelis, Birte Y Glenthøj, Merete Nordentoft

Abstract

Background: Individuals at ultra-high risk for psychosis (UHR) present with subtle alterations in cerebral white matter (WM), which appear to be associated with clinical and functional outcome. The effect of cognitive remediation on WM organization in UHR individuals has not been investigated previously.

Methods: In a randomized, clinical trial, UHR individuals aged 18 to 40 years were assigned to treatment as usual (TAU) or TAU plus cognitive remediation for 20 weeks. Cognitive remediation comprised 20 x 2-h sessions of neurocognitive and social-cognitive training. Primary outcome was whole brain fractional anisotropy derived from diffusion weighted imaging, statistically tested as an interaction between timepoint and treatment group. Secondary outcomes were restricted to five predefined region of interest (ROI) analyses on fractional anisotropy, axial diffusivity, radial diffusivity and mean diffusivity. For significant timepoint and treatment group interactions within these five ROIs, we explored associations between longitudinal changes in WM and cognitive functions/clinical symptoms. Finally, we explored dose-response effects of cognitive remediation on WM.

Results: A total of 111 UHR individuals were included. Attrition-rate was 26%. The cognitive remediation group completed on average 12 h of neurocognitive training, which was considerably lower than per protocol. We found no effect of cognitive remediation on whole-brain FA when compared to treatment as usual. Secondary ROI analyses revealed a nominal significant interaction between timepoint*treatment of AD in left medial lemniscus (P=0.016) which did not survive control for multiple comparisons. The exploratory test showed that this change in AD correlated to improvements of mental flexibility in the cognitive remediation group (p=0.001). We found no dose-response effect of neurocognitive training on WM.

Conclusions: Cognitive remediation comprising 12 h of neurocognitive training on average did not improve global or regional WM organization in UHR individuals. Further investigations of duration and intensity of cognitive training as necessary prerequisites of neuroplasticity-based changes are warranted.

Clinical trial registration: ClinicalTrials.gov, identifier NCT02098408.

Keywords: clinical trial; cognition; cognitive remediation; diffusion-weighted imaging; ultra-high risk for psychosis; white matter.

Copyright © 2020 Kristensen, Ebdrup, Hjorthøj, Mandl, Raghava, Jepsen, Fagerlund, Glenthøj, Wenneberg, Krakauer, Pantelis, Glenthøj and Nordentoft.

Figures

Figure 1
Figure 1
Flowchart of the FOCUS trial. CR, cognitive remediation; MRI, magnetic resonance imaging; TAU, treatment as usual; UHR, ultra-high risk.
Figure 2
Figure 2
Boxplots illustrating the development of mean whole brain fractional anisotropy at baseline and 26 weeks follow-up for UHR individuals allocated to cognitive remediation versus treatment as usual are displayed. Error bars indicate the 95% confidence intervals. Note that the y-axis has been altered to enhance visual display. CR, cognitive remediation; TAU, treatment as usual; UHR, ultra-high risk.
Figure 3
Figure 3
The scatterplots illustrate the exploratory correlations between changes in left medial lemniscus axial diffusivity and changes in mental flexibility (CANTAB IED total errors adjusted) in UHR individuals allocated to cognitive remediation versus treatment as usual are displayed. Error-bars indicate the 95% confidence intervals. Note that the y-axis has been altered to enhance visual display. The correlations have been tested with and without outliers, which were included due to no effect on the result. Numerical results are reported in detail in Supplementary Table S4. CANTAB, Cambridge neuropsychological test automated battery; CR, cognitive remediation; IED, intra-extra dimensional set-shifting; TAU, treatment as usual; UHR, ultra-high risk.

References

    1. Fusar-Poli P, Bonoldi I, Yung AR, Borgwardt S, Kempton MJ, Valmaggia L, et al. Predicting Psychosis. Arch Gen Psychiatry (2012) 69(3):220–9. 10.1001/archgenpsychiatry.2011.1472
    1. Bora E, Lin A, Wood SJ, Yung AR, Mcgorry PD, Pantelis C. Cognitive deficits in youth with familial and clinical high risk to psychosis: A systematic review and meta-analysis. Acta Psychiatr Scand (2014) 130(1):1–15. 10.1111/acps.12261
    1. Fusar-Poli P, Deste G, Smieskova R, Barlati S, Yung AR, Howes O, et al. Cognitive Functioning in Prodromal Psychosis. Arch Gen Psychiatry (2012) 69(6):562–71. 10.1001/archgenpsychiatry.2011.1592
    1. De Herdt A, Wampers M, Vancampfort D, De Hert M, Vanhees L, Demunter H, et al. Neurocognition in clinical high risk young adults who did or did not convert to a first schizophrenic psychosis: A meta-analysis. Schizophr Res (2013) 149(1-3):48–55. 10.1016/j.schres.2013.06.017
    1. Mam-lam-Fook C, Danset-Alexandre C, Pedron L, Amado I, Gaillard R, Krebs M-O. Neuropsychology of subjects with ultra-high risk (UHR) of psychosis: A critical analysis of the literature. Encephale (2017) 43(3):241–53. 10.1016/j.encep.2017.02.001
    1. de Paula ALD, Hallak JEC, Maia-de-Oliveira JP, Bressan RA, Machado-de-Sousa JP. Cognition in at-risk mental states for psychosis. Neurosci Biobehav Rev (2015) 57:199–208. 10.1016/j.neubiorev.2015.09.006
    1. Vijayakumar N, Bartholomeusz C, Whitford T, Hermens DF, Nelson B, Rice S, et al. White matter integrity in individuals at ultra-high risk for psychosis: a systematic review and discussion of the role of polyunsaturated fatty acids. BMC Psychiatry (2016) 16(1):1. 10.1186/s12888-016-0932-4
    1. Le Bihan D, Iima M. Diffusion magnetic resonance imaging: What water tells us about biological tissues. PloS Biol (2015) 13(7):1–13. 10.1371/journal.pbio.1002203
    1. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics (2007) 4(3):316–29. 10.1016/j.nurt.2007.05.011
    1. Kristensen TD, Mandl RCW, Raghava JM, Jessen K, Jepsen JRM, Fagerlund B, et al. Widespread higher fractional anisotropy associates to better cognitive functions in individuals at ultra-high risk for psychosis. Hum Brain Mapp (2019) 40(18):5185–201. 10.1002/hbm.24765
    1. Krakauer K, Ebdrup BH, Glenthoj BY, Raghava JM, Nordholm D, Randers L, et al. Patterns of white matter microstructure in individuals at ultra-high-risk for psychosis: Associations to level of functioning and clinical symptoms. Psychol Med (2017) 47(15):2689–707. 10.1017/S0033291717001210
    1. Peters BD, Dingemans PM, Dekker N, Blaas J, Akkerman E, van Amelsvoort TA, et al. White matter connectivity and psychosis in ultra-high-risk subjects: A diffusion tensor fiber tracking study. Psychiatry Res - Neuroimag (2010) 181(1):44–50. 10.1016/j.pscychresns.2009.10.008
    1. Nazeri A, Chakravarty MM, Felsky D, Lobaugh NJ, Rajji TK, Mulsant BH, et al. Alterations of superficial white matter in schizophrenia and relationship to cognitive performance. Neuropsychopharmacology (2013) 38(10):1954–62. 10.1038/npp.2013.93
    1. Penades R, Vallespi LG, Franck N, Dekerle M. Neuroimaging Studies of Cognitive Function in Schizophrenia Chapter. Adv Exp Med Biol (2019) 1118(January):v–vi. 10.1007/978-3-030-05542-4_6
    1. Fisher M, Loewy R, Hardy K, Schlosser D, Vinogradov S. Cognitive Interventions Targeting Brain Plasticity in the Prodromal and Early Phases of Schizophrenia. Annu Rev Clin Psychol (2013) 9:435–63. 10.1146/annurev-clinpsy-032511-143134
    1. Vinogradov S, Fisher M, de Villers-Sidani E. Cognitive training for impaired neural systems in neuropsychiatric illness. Neuropsychopharmacology (2012) 37(1):43–76. 10.1038/npp.2011.251
    1. Kristensen TD, Mandl RCW, Jepsen JRMM, Rostrup E, Glenthøj LB, Nordentoft M, et al. Non-pharmacological modulation of cerebral white matter organization: A systematic review of non-psychiatric and psychiatric studies. Neurosci Biobehav Rev (2018) 88(August 2017):84–97. 10.1016/j.neubiorev.2018.03.013
    1. Penadés R, Pujol N, Catalán R, Massana G, Rametti G, Garcıa-Rizo C, et al. Brain effects of cognitive remediation therapy in schizophrenia: A structural and functional neuroimaging study. Biol Psychiatry (2013) 73(10):1015–23. 10.1016/j.biopsych.2013.01.017
    1. Keshavan MS, Hogarty GE. Brain maturational processes and delayed onset in schizophrenia. Dev Psychopathol (1999) 11(3):525–43. 10.1017/S0954579499002199
    1. Wykes T, Huddy V, Cellard C, McGurk SR, Czobor P. A meta-analysis of cognitive remediation for schizophrenia: Methodology and effect sizes. Am J Psychiatry (2011) 168(5):472–85. 10.1176/appi.ajp.2010.10060855
    1. Mogami T. Cognitive remediation for schizophrenia with focus on NEAR. Front Psychiatry (2018) 8:304(JAN). 10.3389/fpsyt.2017.00304
    1. McGurk SR, Twamley EW, Sitzer DI, J GM, Mueser KT. A Meta-Analysis of Cognitive Remediation in Schizophrenia. Am J Psychiatry (2007) 164(12):1791–802. 10.1176/appi.ajp.2007.07060906.A
    1. Glenthøj LB, Hjorthøj C, Kristensen TD, Davidson CA, Nordentoft M. The effect of cognitive remediation in individuals at ultra-high risk for psychosis: a systematic review. NPJ Schizophr (2017) 3(1):20. 10.1038/s41537-017-0021-9
    1. Loewy R, Fisher M, Schlosser DA, Biagianti B, Stuart B, Mathalon DH, et al. Intensive Auditory Cognitive Training Improves Verbal Memory in Adolescents and Young Adults at Clinical High Risk for Psychosis. Schizophr Bull (2016) 42 Suppl 1:S118–26. 10.1093/schbul/sbw009. sbw009.
    1. Choi J, Corcoran CM, Fiszdon JM, Stevens M, Javitt DC, Deasy M, et al. Pupillometer-Based Neurofeedback Cognitive Training to Improve Processing Speed and Social Functioning in Individuals at Clinical High Risk for Psychosis. Psychiatr Rehabil J (2016) 40(1):33–42. 10.1037/prj0000217
    1. Glenthøj LB, Fagerlund B, Randers L, Hjorthøj CR, Wenneberg C, Krakauer K, et al. The FOCUS trial: cognitive remediation plus standard treatment versus standard treatment for patients at ultra-high risk for psychosis: study protocol for a randomised controlled trial. Trials (2015) 16(1):1–10. 10.1186/s13063-014-0542-8
    1. Glenthøj LB, Mariegaard LS, Fagerlund B, Jepsen JRM, Kristensen TD, Wenneberg C, et al. Cognitive remediation plus standard treatment versus standard treatment alone for individuals at ultra-high risk of developing psychosis: results of the FOCUS randomised clinical trial. Schizophrenia Res (2020) 19:2(September):54–5. 10.1002/wps.20760
    1. Yung AR, Yuen HP, McGorry PD, Phillips LJ, Kelly D, Dell'Olio M, et al. Mapping the onset of psychosis: The Comprehensive Assessment of At-Risk Mental States. Aust N Z J Psychiatry (2005) 39(11-12):964–71. 10.1111/j.1440-1614.2005.01714.x
    1. First MB, Gibbon M. The Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and the Structured Clinical Interview for DSM-IV Axis II Disorders (SCID-II). In: Comprehensive Handbook of Psychological Assessment, Vol. 2: Personality Assessment. Hoboken, NJ, US: John Wiley & Sons Inc; (2004). p. 134–43.
    1. Spitzer RL, Williams JBW, Gibbon M, First MB. User"s Guide for the Structured Clinical Interview for DSM-III-R: SCID. Arlington, VA, US: American Psychiatric Association; (1990).
    1. Ventura J, Nuechterlein KH, Subotnik KL, Gutkind D, Gilbert E a. Symptom dimensions in recent-onset schizophrenia and mania: A principal components analysis of the 24-item Brief Psychiatric Rating Scale. Psychiatry Res (2000) 97(2-3):129–35. 10.1016/S0165-1781(00)00228-6
    1. Andreasen NC. Scale for the Assessment of Negative Symptoms. Iowa City, Iowa: Dept. of Psychiatry, College of Medicine, the University of Iowa; (1984).
    1. Montgomery S a., Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry (1979) 134(4):382–9. 10.1192/bjp.134.4.382
    1. Wechsler D. Wais-3 Administration and Scoring Manual. San Antonio TX: The Psychological Corporation; (1997). Available at: .
    1. Keefe RSE, Harvey PD, Goldberg TE, Gold JM, Walker TM, Kennel C, et al. Norms and standardization of the Brief Assessment of Cognition in Schizophrenia (BACS). Schizophr Res (2008) 102(1-3):108–15. 10.1016/j.schres.2008.03.024
    1. Sahakian BJ, Owen a M. Computerized assessment in neuropsychiatry using CANTAB: discussion paper. R Soc Med (1992) 85(July):399–402. 10.1177/014107689208500711
    1. Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: Application to diffusion tensor imaging. Neuroimage (2003) 20(2):870–88. 10.1016/S1053-8119(03)00336-7
    1. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. Fsl. Neuroimage (2012) 62(2):782–90. 10.1016/j.neuroimage.2011.09.015
    1. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage (2006) 31(4):1487–505. 10.1016/j.neuroimage.2006.02.024
    1. Mori S, Van Zijl P. Human white matter atlas. Am J Psychiatry (2007) 164(July):75390. 10.1176/appi.ajp.164.7.1005
    1. Roalf DR, Quarmley M, Elliott MA, Satterthwaite TD, Vandekar SN, Ruparel K, et al. The Impact of Quality Assurance Assessment on Diffusion Tensor Imaging Outcomes in a Large-Scale Population-Based Cohort. Neuroimage. (2016) 125:903–19. 10.1016/j.neuroimage.2015.10.068
    1. Eack SM. Cognitive Enhancement Therapy for Early-Course Schizophrenia: Effects of a. Psychiatr Serv (2009) 60:1468–76. 10.1176/ps.2009.60.11.1468
    1. Medalia A, Freilich B. The Neuropsychological Educational Approach to Cognitive Remediation (NEAR) Model: Practice Principles and Outcome Studies. Am J Psychiatr Rehabil (2008) 11(2):123–43. 10.1080/15487760801963660
    1. Roberts DL, David P, Combs DR. Social Cognition and Interaction Training (SCIT): Group Psychotherapy for Schizophrenia and Other Psychotic Disorders, Clinician Guide. Oxford, United Kingdom: Oxford University Press; (2015).
    1. Penn DL, Roberts DL, Combs D, Sterne A. Best practices: The development of the Social Cognition and Interaction Training program for schizophrenia spectrum disorders. Psychiatr Serv (2007) 58(4):449–51. 10.1176/appi.ps.58.4.449
    1. Lu K, Mehrotra DV. Specification of covariance structure in longitudinal data analysis for randomized clinical trials. Stat Med (2010) 29(4):474–88. 10.1002/sim.3820
    1. Jean Dunn O. Multiple Comparisons Among Means. J Am Stat Assoc (1961) 56(293):52–64. 10.1080/01621459.1961.10482090
    1. Hooker CI, Carol EE, Eisenstein TJ, Yin H, Lincoln SH, Tully LM, et al. A pilot study of cognitive training in clinical high risk for psychosis: Initial evidence of cognitive benefit. Schizophr Res (2014) 157(1-3):314–6. 10.1016/j.schres.2014.05.034
    1. Mandl RCW, Schnack HG, Zwiers MP, van der Schaaf A, Kahn RS, Hulshoff Pol HE. Functional Diffusion Tensor Imaging: Measuring Task-Related Fractional Anisotropy Changes in the Human Brain along White Matter Tracts. PloS One (2008) 3(11):e3631. 10.1371/journal.pone.0003631
    1. Tavor I, Hofstetter S, Assaf Y. Micro-structural assessment of short term plasticity dynamics. Neuroimage. (2013) 81:1–7. 10.1016/j.neuroimage.2013.05.050
    1. Johansen-Berg H, Baptista CS, Thomas AG. Human Structural Plasticity at Record Speed. Neuron (2012) 73(6):1058–60. 10.1016/j.neuron.2012.03.001
    1. Schlegel A, Alexander P, Fogelson SV, Li X, Lu Z, Kohler PJ, et al. The artist emerges: Visual art learning alters neural structure and function. Neuroimage (2014) 105:440–51. 10.1016/j.neuroimage.2014.11.014
    1. Schlegel AA, Rudelson JJ, Tse PU. White Matter Structure Changes as Adults Learn a Second Language. J Cognit Neurosci (2012) 8):1664–70. 10.1162/jocn_a_00240
    1. Taubert M, Draganski B, Anwander A, Muller K, Horstmann A, Villringer A, et al. Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections 3. J Neurosci (2010) 30(1529-2401(1529-2401 (Electronic):11670–7. 10.1523/JNEUROSCI.2567-10.2010
    1. Lombroso P, Ogren M. Learning and memory, part II: molecular mechanisms of synaptic plasticity. J Am Acad Child Adolesc Psychiatry (2009) 48(1):5–9. 10.1097/CHI.0b013e318190c4b3
    1. Zatorre RJ, Fields RD, Johansen-Berg H. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci (2012) 15(4):528–36. 10.1038/nn.3045
    1. Wang S, Young KM. White matter plasticity in adulthood. Neuroscience (2013) 276:148–60. 10.1016/j.neuroscience.2013.10.018
    1. Jones DK, Knösche TR, Turner R. White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI. Neuroimage (2013) 73:239–54. 10.1016/j.neuroimage.2012.06.081
    1. Crocker LD, Heller W, Warren SL, O’Hare AJ, Infantolino ZP, Miller G a. Relationships among cognition, emotion, and motivation: implications for intervention and neuroplasticity in psychopathology. Front Hum Neurosci (2013) 7:261(June):261. 10.3389/fnhum.2013.00261
    1. Kamali A, Kramer LA, Butler IJ, Hasan KM. Diffusion tensor tractography of the somatosensory system in the human brainstem: initial findings using high isotropic spatial resolution at 3.0 T. Eur Radiol (2009) 19(6):1480–8. 10.1007/s00330-009-1305-x
    1. Bernard JA, Orr JM, Mittal VA. Cerebello-thalamo-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis. NeuroImage Clin (2017) 14:622–8. 10.1016/j.nicl.2017.03.001
    1. Bernard JA, Dean DJ, Kent JS, Orr JM, Pelletier-Baldelli A, Lunsford-Avery JR, et al. Cerebellar networks in individuals at ultra high-risk of psychosis: Impact on postural sway and symptom severity. Hum Brain Mapp (2014) 35(8):4064–78. 10.1002/hbm.22458
    1. Subramaniam K, Gill J, Fisher M, Mukherjee P, Nagarajan S, Vinogradov S. White matter microstructure predicts cognitive training-induced improvements in attention and executive functioning in schizophrenia. Schizophr Res (2018) 193:276–83. 10.1016/j.schres.2017.06.062
    1. Pantelis C, Wannan C, Bartholomeusz CF, Allott K, McGorry PD. Cognitive intervention in early psychosis - preserving abilities versus remediating deficits. Curr Opin Behav Sci (2015) 4:63–72. 10.1016/j.cobeha.2015.02.008

Source: PubMed

3
Iratkozz fel