Effect of intranasal esketamine on cognitive functioning in healthy participants: a randomized, double-blind, placebo-controlled study

Randall L Morrison, Maggie Fedgchin, Jaskaran Singh, Joop Van Gerven, Rob Zuiker, Kyoung Soo Lim, Peter van der Ark, Ewa Wajs, Liwen Xi, Peter Zannikos, Wayne C Drevets, Randall L Morrison, Maggie Fedgchin, Jaskaran Singh, Joop Van Gerven, Rob Zuiker, Kyoung Soo Lim, Peter van der Ark, Ewa Wajs, Liwen Xi, Peter Zannikos, Wayne C Drevets

Abstract

Background: The effect of intranasal esketamine on cognitive functioning in healthy participants is assessed in this study.

Methods: Twenty-four participants (19-49 years) were randomized to one of two treatment sequences in which either esketamine 84 mg or placebo was intranasally administered in a double-blind, two-period crossover design. Primary measures included five tests of Cogstate® computerized test battery assessed at 1 h predose and 40 min, 2, 4, and 6 h postdose. Secondary measures included the Mental Effort Scale, Karolinska Sleepiness Scale (KSS), and safety.

Results: Esketamine was associated with significant cognitive performance impairment at 40 min postdose for all five Cogstate® tests (Detection p = 0.0011, Identification p = 0.0006, One-Card Learning p = 0.0040, One Back p = 0.0017, and Groton Maze Learning Test p < 0.0001) versus placebo. In contrast, performance on these tests did not differ significantly between esketamine and placebo at 2, 4, or 6 h postdose. Secondary outcomes indicated a significant, transient increase from baseline under esketamine versus placebo at 40 min postdose on the Mental Effort Scale and at 40 min and 2 h postdose on KSS (p < 0.0001 for both); however, no significant difference was observed on these outcomes between esketamine and placebo at later timepoints. The most commonly reported adverse events were dizziness (67%), nausea (37.5%), disturbance in attention (29.2%), and fatigue (29.2%); the majority were considered mild in severity.

Conclusions: Esketamine was associated with cognitive performance decline, and greater effort was required to complete the test battery versus placebo at 40 min postdose, which returned to placebo-comparable levels by 2 h postdose.

Trial registration: ClinicalTrials.gov identifier: NCT02094378.

Keywords: Cognitive functioning; Cogstate® computerized test battery; Intranasal esketamine; Treatment-resistant depression.

Conflict of interest statement

Conflict of interest

Drs. Morrison, Fedgchin, Singh, van der Ark, Wajs, Xi, Zannikos, and Drevets are employees of Janssen Research & Development and hold stock in the company. The study site received a research grant from Janssen Research & Development.

Figures

Fig. 1
Fig. 1
Study design and participant flow
Fig. 2
Fig. 2
Cognitive function measures mean plots (± SE) for a Detection, b Identification, c One-Card Learning d One Back, e Groton Maze Learning Test (ITT Analysis Set)
Fig. 2
Fig. 2
Cognitive function measures mean plots (± SE) for a Detection, b Identification, c One-Card Learning d One Back, e Groton Maze Learning Test (ITT Analysis Set)
Fig. 3
Fig. 3
Secondary cognitive function measures mean plots (± SE) for a Mental Effort Scale and b Karolinska Sleepiness Scale (ITT Analysis Set)
Fig. 4
Fig. 4
Total scores over time [mean (SD)] for a Brief Psychiatric Rating Scale and b Clinician-Administered Dissociative States Scale (Safety Analysis Set)

References

    1. aan het Rot M, Collins KA, Murrough JW, Perez AM, Reich DL, Charney DS, Mathew SJ. Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry. 2010;67(2):139–145. doi: 10.1016/j.biopsych.2009.08.038.
    1. Andrade C. Intranasal drug delivery in neuropsychiatry: focus on intranasal ketamine for refractory depression. J Clin Psychiatry. 2015;76:628–631. doi: 10.4088/JCP.15f10026.
    1. Bitter C (2011) Transmucosal nasal drug delivery: pharmacokinetics and pharmacodynamics of nasally applied esketamine. Dissertation, University of Basel
    1. Collie A, Maruff P, McStephen M, Darby D. Psychometric issues associated with computerised neuropsychological assessment of concussed athletes. Br J Sports Med. 2003;37(6):556–559. doi: 10.1136/bjsm.37.6.556.
    1. Daly E, Singh J, Fedgchin M, Cooper K, Lim P, Shelton RC, Thase ME, Winokur A, Van Nueten L, Manji H, Drevets WC (2017) Efficacy and safety of intranasal esketamine in treatment-resistant depression: results of a double-blind, doubly-randomized, placebo-controlled study. Am J Psychiatry. In press
    1. Diamond PR, Farmery AD, Atkinson S, Haldar J, Williams N, Cowen PJ, Geddes JR, McShane R. Ketamine infusions for treatment resistant depression: a series of 28 patients treated weekly or twice weekly in an ECT clinic. J Psychopharmacol. 2014;28(6):536–544. doi: 10.1177/0269881114527361.
    1. Diaz JH. Intranasal ketamine preinduction of paediatric outpatients. Paediatr Anaesth. 1997;7(4):273–278. doi: 10.1046/j.1460-9592.1997.d01-93.x.
    1. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22(3):238–249. doi: 10.1038/nm.4050.
    1. Fact sheet (Reviewed April 2016). Accessed date 23 August 2017
    1. Himmelseher S, Pfenninger E. The clinical use of S-(+)-ketamine--a determination of its place. Anasthesiol Intensivmed Notfallmed Schmerzther. 1998;33(12):764–770. doi: 10.1055/s-2007-994851.
    1. Kavalali ET, Monteggia LM. Synaptic mechanisms underlying rapid antidepressant action of ketamine. Am J Psychiatry. 2012;169(11):1150–1156. doi: 10.1176/appi.ajp.2012.12040531.
    1. Krystal JH, Perry EB, Jr, Gueorguieva R, Belger A, Madonick SH, Abi-Dargham A, Cooper TB, Macdougall L, Abi-Saab W, D'Souza DC. Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function. Arch Gen Psychiatry. 2005;62(9):985–994. doi: 10.1001/archpsyc.62.9.985.
    1. Louon A, Reddy VG. Nasal midazolam and ketamine for paediatric sedation during computerised tomography. Acta Anaesthesiol Scand. 1994;38(3):259–261. doi: 10.1111/j.1399-6576.1994.tb03885.x.
    1. Machado-Vieira R, Salvadore G, Diazgranados N, Zarate CA., Jr Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacol Ther. 2009;123(2):143–150. doi: 10.1016/j.pharmthera.2009.02.010.
    1. Maruff P, Falleti MG, Collie A, Darby D, McStephen M. Fatigue-related impairment in the speed, accuracy and variability of psychomotor performance: comparison with blood alcohol levels. J Sleep Res. 2005;14(1):21–27. doi: 10.1111/j.1365-2869.2004.00438.x.
    1. Maruff P, Thomas E, Cysique L, Brew B, Collie A, Snyder P, Pietrzak RH. Validity of the CogState brief battery: relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex. Arch Clin Neuropsychol. 2009;24(2):165–178. doi: 10.1093/arclin/acp010.
    1. Mathew SJ, Murrough JW, aan het Rot M, Collins KA, Reich DL, Charney DS. Riluzole for relapse prevention following intravenous ketamine in treatment-resistant depression: a pilot randomized, placebo-controlled continuation trial. Int J Neuropsychopharmacol. 2010;13(1):71–82. doi: 10.1017/S1461145709000169.
    1. McIntyre RS, Lophaven S, Olsen CK. A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. Int J Neuropsychopharmacol. 2014;17(10):1557–1567. doi: 10.1017/S1461145714000546.
    1. Morgan CJ, Curran HV. Acute and chronic effects of ketamine upon human memory: a review. Psychopharmacology. 2006;188(4):408–424. doi: 10.1007/s00213-006-0572-3.
    1. Morgan CJ, Muetzelfeldt L, Curran HV. Ketamine use, cognition and psychological wellbeing: a comparison of frequent, infrequent and ex-users with polydrug and non-using controls. Addiction. 2009;104(1):77–87. doi: 10.1111/j.1360-0443.2008.02394.x.
    1. Morgan CJ, Muetzelfeldt L, Curran HV. Consequences of chronic ketamine self-administration upon neurocognitive function and psychological wellbeing: a 1-year longitudinal study. Addiction. 2010;105(1):121–133. doi: 10.1111/j.1360-0443.2009.02761.x.
    1. Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CE, Perez AM, Iqbal S, Pillemer S, Foulkes A, Shah A, Charney DS, Mathew SJ. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry. 2013;170(10):1134–1142. doi: 10.1176/appi.ajp.2013.13030392.
    1. Murrough JW, Perez AM, Pillemer S, Stern J, Parides MK, aan het Rot M, Collins KA, Mathew SJ, Charney DS, Iosifescu DV. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry. 2013;74(4):250–256. doi: 10.1016/j.biopsych.2012.06.022.
    1. Murrough JW, Wan LB, Iacoviello B, Collins KA, Solon C, Glicksberg B, Perez AM, Mathew SJ, Charney DS, Iosifescu DV, Burdick KE. Neurocognitive effects of ketamine in treatment-resistant major depression: association with antidepressant response. Psychopharmacology. 2014;231(3):481–488. doi: 10.1007/s00213-013-3255-x.
    1. Murrough JW, Burdick KE, Levitch CF, Perez AM, Brallier JW, Chang LC, Foulkes A, Charney DS, Mathew SJ, Iosifescu DV. Neurocognitive effects of ketamine and association with antidepressant response in individuals with treatment-resistant depression: a randomized controlled trial. Neuropsychopharmacology. 2015;40(5):1084–1090. doi: 10.1038/npp.2014.298.
    1. Narendran R, Frankle WG, Keefe R, Gil R, Martinez D, Slifstein M, Kegeles LS, Talbot PS, Huang Y, Hwang DR, Khenissi L, Cooper TB, Laruelle M, Abi-Dargham A. Altered prefrontal dopaminergic function in chronic recreational ketamine users. Am J Psychiatry. 2005;162(12):2352–2359. doi: 10.1176/appi.ajp.162.12.2352.
    1. Newport DJ, Carpenter LL, McDonald WM, Potash JB, Tohen M, Nemeroff CB, A. P. A. C. o. R. T. F. o. N. Biomarkers and Treatments Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am J Psychiatry. 2015;172(10):950–966. doi: 10.1176/appi.ajp.2015.15040465.
    1. Olver JS, Ignatiadis S, Maruff P, Burrows GD, Norman TR. Quetiapine augmentation in depressed patients with partial response to antidepressants. Hum Psychopharmacol. 2008;23(8):653–660. doi: 10.1002/hup.970.
    1. Perry EB, Jr, Cramer JA, Cho HS, Petrakis IL, Karper LP, Genovese A, O’Donnell E, Krystal JH, D’Souza DC, Yale G Ketamine Study Psychiatric safety of ketamine in psychopharmacology research. Psychopharmacology. 2007;192:253–260. doi: 10.1007/s00213-007-0706-2.
    1. Pietrzak RH, Olver J, Norman T, Piskulic D, Maruff P, Snyder PJ. A comparison of the CogState Schizophrenia Battery and the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Battery in assessing cognitive impairment in chronic schizophrenia. J Clin Exp Neuropsychol. 2009;31(7):848–859. doi: 10.1080/13803390802592458.
    1. Shiroma PR, Albott CS, Johns B, Thuras P, Wels J, Lim KO. Neurocognitive performance and serial intravenous subanesthetic ketamine in treatment-resistant depression. Int J Neuropsychopharmacol. 2014;17(11):1805–1813. doi: 10.1017/S1461145714001011.
    1. Singh JB, Fedgchin M, Daly E, Xi L, Melman C, De Bruecker G, Tadic A, Sienaert P, Wiegand F, Manji H, Drevets WC. Intravenous esketamine in adult treatment-resistant depression: a double-blind, double-randomization, placebo-controlled study. Biol Psychiatry. 2016;80(6):424–431. doi: 10.1016/j.biopsych.2015.10.018.
    1. Snyder PJ, Werth J, Giordani B, Caveney AF, Feltner D, Maruff P. A method for determining the magnitude of change across different cognitive functions in clinical trials: the effects of acute administration of two different doses alprazolam. Hum Psychopharmacol. 2005;20(4):263–273. doi: 10.1002/hup.692.
    1. Verster JC, van de Loo AJ, Roth T. Mirtazapine as positive control drug in studies examining the effects of antidepressants on driving ability. Eur J Pharmacol. 2015;753:252–256. doi: 10.1016/j.ejphar.2014.10.032.
    1. Weber F, Wulf H, El Saeidi G. Premedication with nasal s-ketamine and midazolam provides good conditions for induction of anesthesia in preschool children. Can J Anaesth. 2003;50(5):470–475. doi: 10.1007/BF03021058.
    1. Weksler N, Ovadia L, Muati G, Stav A. Nasal ketamine for paediatric premedication. Can J Anaesth. 1993;40(2):119–121. doi: 10.1007/BF03011307.
    1. Yanagihara Y, Ohtani M, Kariya S, Uchino K, Hiraishi T, Ashizawa N, Aoyama T, Yamamura Y, Yamada Y, Iga T. Plasma concentration profiles of ketamine and norketamine after administration of various ketamine preparations to healthy Japanese volunteers. Biopharm Drug Dispos. 2003;24(1):37–43. doi: 10.1002/bdd.336.
    1. Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, Dong C, Hashimoto K. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry. 2015;5(9):e632. doi: 10.1038/tp.2015.136.
    1. Yoshida T, Ishikawa M, Niitsu T, Nakazato M, Watanabe H, Shiraishi T, Shiina A, Hashimoto T, Kanahara N, Hasegawa T, Enohara M. Decreased serum levels of mature brain-derived neurotrophic factor (BDNF), but not its precursor proBDNF, in patients with major depressive disorder. PLoS One. 2012;7(8):e42676. doi: 10.1371/journal.pone.0042676.
    1. Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63(8):856–864. doi: 10.1001/archpsyc.63.8.856.

Source: PubMed

3
Iratkozz fel