The effects of smoking and smoking cessation on nasal mucociliary clearance, mucus properties and inflammation

Daniela Mitiyo Odagiri Utiyama, Carolina Tieko Yoshida, Danielle Miyuki Goto, Tômas de Santana Carvalho, Ubiratan de Paula Santos, Andreas Rembert Koczulla, Paulo Hilário Nascimento Saldiva, Naomi Kondo Nakagawa, Daniela Mitiyo Odagiri Utiyama, Carolina Tieko Yoshida, Danielle Miyuki Goto, Tômas de Santana Carvalho, Ubiratan de Paula Santos, Andreas Rembert Koczulla, Paulo Hilário Nascimento Saldiva, Naomi Kondo Nakagawa

Abstract

Objective: The aim of the present study was to assess nasal mucociliary clearance, mucus properties and inflammation in smokers and subjects enrolled in a Smoking Cessation Program (referred to as quitters).

Method: A total of 33 subjects with a median (IQR) smoking history of 34 (20-58) pack years were examined for nasal mucociliary clearance using a saccharine transit test, mucus properties using contact angle and sneeze clearability tests, and quantification of inflammatory and epithelial cells, IL-6 and IL-8 concentrations in nasal lavage fluid. Twenty quitters (mean age: 51 years, 9 male) were assessed at baseline, 1 month, 3 months and 12 months after smoking cessation, and 13 smokers (mean age: 52 years, 6 male) were assessed at baseline and after 12 months. Clinicaltrials.gov: NCT02136550.

Results: Smokers and quitters showed similar demographic characteristics and morbidities. At baseline, all subjects showed impaired nasal mucociliary clearance (mean 17.6 min), although 63% and 85% of the quitters demonstrated significant nasal mucociliary clearance improvement at 1 month and 12 months, respectively. At 12 months, quitters also showed mucus sneeze clearability improvement (∼26%), an increased number of macrophages (2-fold) and no changes in mucus contact angle or cytokine concentrations.

Conclusion: This study showed that smoking cessation induced early improvements in nasal mucociliary clearance independent of mucus properties and inflammation. Changes in mucus properties were observed after only 12 months of smoking cessation.

Conflict of interest statement

No potential conflict of interest was reported.

Figures

Figure 1
Figure 1
Longitudinal study design.
Figure 2
Figure 2
Concentrations of cotinine (ng/mL) and exhaled carbon monoxide (ppm) in smokers and quitters throughout the study.
Figure 3
Figure 3
Nasal mucociliary clearance according to the saccharine transit time (min) and mucus clearability by sneeze (mm) in smokers and quitters throughout the study.

References

    1. Verra F, Escudier E, Lebargy F, Bernaudin JF, Crèmoux H, Bignon J. Ciliary abnormalities in bronchial epithelium of smokers, ex-smokers, and nonsmokers. Am J Respir Crit Care Med. 1995;151((3 Pt 1)):630–4. doi: 10.1164/ajrccm/151.3_Pt_1.630.
    1. Leopold PL, O’Mahony MJ, Lian XJ, Tilley AE, Harvey BG, Crystal RG. Smoking is associated with shortened airway cilia. Plos One. 2009;4((12)):1–11. doi: 10.1371/journal.pone.0008157.
    1. Stanley PJ, Wilson R, Greenstone MA, MacWilliam L, Cole PJ. Effect of cigarette smoking on nasal mucociliary clearance and ciliary beat frequency. Thorax. 1986;41((7)):519–23. doi: 10.1136/thx.41.7.519.
    1. Karaman M, Tek A. Deleterious effect of smoking and nasal septal deviation on mucociliary clearance and improvement after septoplasty. Am J Rhinol Allergy. 2009;23((1)):2–7. doi: 10.2500/ajra.2009.23.3253.
    1. Nakagawa NK, Franchini ML, Driusso P, Oliveira LR, Saldiva PH, Lorenzi-Filho G. Mucociliary clearance is impaired in acutely ill patients. Chest. 2005;128((4)):2772–77. doi: 10.1378/chest.128.4.2772.
    1. Astrand ABM, Hemmerling M, Root J, Wingren C, Pesic J, Johansson E, et al. Linking increased airway hydration, ciliary beating, and mucociliary clearance through ENaC inhibition. Am J Physiol Lung Cell Mol Physiol. 2015;308((1)):L22–32. doi: 10.1152/ajplung.00163.2014.
    1. Nicola ML, Carvalho HB, Yoshida CT, Anjos F, Nakao M, Santos UP, et al. Young “healthy” smokers have functional and inflammatory changes in the nasal and lower airways. Chest. 2014;145((5)):998–1005. doi: 10.1378/chest.13-1355.
    1. Pagliuca G, Rosato C, Martellucci S, de Vincentiis M, Greco A, Fusconi M, et al. Cytologic and functional alterations of nasal mucosa in smokers: temporary or permanent damage. Otolaryngol Head Neck Surg. 2015;152((4)):740–5. doi: 10.1177/0194599814566598.
    1. Cosio MG, Hale KA, Niewoehner DE. Morphologic and morphometric effects of prolonged cigarette smoking on the small airways. Am Rev Respir Dis. 1980;122((2)):265–21.
    1. Konrad F, Schreiber T, Brecht-Kraus D, Georgieff M. Mucociliary transport in ICU patients. Chest. 1994;105((1)):237–41. doi: 10.1378/chest.105.1.237.
    1. Prescott E, Lange P, Vestbo J. Chronic mucus hypersecretion in COPD and death from pulmonary infection. Eur Respir J. 1995;8((8)):1333–8. doi: 10.1183/09031936.95.08081333.
    1. Meyer KC. Lung infections and aging. Ageing Res Rev. 2004;3:55–67. doi: 10.1016/j.arr.2003.07.002.
    1. Dreyse J, Diaz O, Repetto PB, Morales A, Saldías F, Lisboa C. Do frequent moderate exacerbations contribute to progression of chronic obstrutive pulmonray disease in patients who are ex-smokers. Intern J COPD. 2015;10:525–33. doi: 10.2147/COPD.S76475.
    1. Decramer M, Nici L, Nardini S, Reardon J, Rohester CL, Sanguinetti CM, et al. Targeting the COPD exacerbation. Respir Med. 2008;102((1)):S3–15. doi: 10.1016/S0954-6111(08)70003-9.
    1. Celli BR. Update on the management of COPD. Chest. 2008;133:1451–62. doi: 10.1378/chest.07-2061.
    1. Doll R, Peto R, Boreham J. Mortality in relation to smoking: 50 years observations on male British doctors. Brit Med J. 2004;328((7455)):1519–33. doi: 10.1136/.
    1. Anthonisen NR, Skeans MA, Wise RA, Manfreda J, Kanner RE, Connett JE. The effects of a smoking cessation intervention on 14.5-year mortality: a randomized clinical trial. Ann Intern Med. 2005;142((4)):233–9. doi: 10.7326/0003-4819-142-4-200502150-00005.
    1. Halvorsen B, Sagen EL, Ueland T, Aukrust P, Tonstad S. Effect of smoking cessation on markers of inflammation and endothelial cell activation among individuals with high risk for cardiovascular disease. Scan F Clin Lab Invest. 2007;67((6)):604–11. doi: 10.1080/00365510701283878.
    1. Oliveira-Maul JP, Carvalho HB, Goto DM, Maia RM, Fló C, Barnabe V, et al. Aging, diabetes and hypertension are associated with decreased nasal mucociliary clearance. Chest. 2013;143((4)):1091–97. doi: 10.1378/chest.12-1183.
    1. King M, Brock G, Lundell C. Clearance of mucus by simulated cough. J Appl Physiol. 1985;58((6)):1776–82.
    1. Nakagawa NK, Macchione M, Petrolino HM, Guimaraes ET, King M, Saldiva PHN, et al. Effects of a heat and moisture exchanger and a heated humidifier on respiratory mucus in patients undergoing mechanical ventilation. Crit Care Med. 2000;28((2)):312–7. doi: 10.1097/00003246-200002000-00004.
    1. Naclerio RM, Meier HL, Kagey-Sobotka A, Adkinson NF, Jr, Meyer DA, Norman PS, et al. Mediator release after nasal airway challenge with allergen. Am Rev Respir Dis. 1986;128((4)):597–602.
    1. Jones JG, Mintry BD, Lawler P, Hulands G, Crawley JC, Veall N. Increased alveolar epithelial permeability in cigarette smokers. Lancet. 1980;1((8159)):66–8. doi: 10.1016/S0140-6736(80)90493-6.
    1. Clunes LA, Davies CM, Coakley RD, Aleksandrov AA, Henderson AG, Zeman KL, et al. Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surfaces liquid dehydration. FASEB J. 2012;26((2)):533–45. doi: 10.1096/fj.11-192377.
    1. Aufderheide M, Scheffler S, Ito S, Ishikawa S, Emura M. Ciliotoxicity in human primary bronchiolar epitelial cells after repeated exposure at the air-liquid interface with native mainstream smoke of K3R4F cigarettes with and without charcoal filter. Exp Toxicol Pathol. 2015;((67)):407–11.
    1. Tamashiro E, Xiong G, Anselmo-Lima WT, KreindlerJL, Palmer JN, Cohen NA. Cigarette smoke exposure impairs respiratory epitelial ciliogenesis. Am J Rhinol Allergy. 2009;23((2)):117–22. doi: 10.2500/ajra.2009.23.3280.
    1. Littlejohn MC, Stiernberg CM, Hokanson JA, Quinn FB, Bailey BJ. The relationship between the nasal cycle and mucociliary clearance. Laryngoscope. 1992;20((2)):117–20. doi: 10.1288/00005537-199202000-00002.
    1. Mahakit P, Pumhirun P. A preliminary study of nasal mucociliary clearance in smokers, sinusites and allergic rhinits patients. Asian Pac J Allergy Immunol. 1995;13((2)):119–21.
    1. Habesoglu M, Demir K, Yumusakhuylu AC, Yilmaz AS, Oysu C. Does passive smoking have an effect on nasal mucociliary clearance. Otolaryngology Head and Neck Surg. 2012;147((1)):152–6. doi: 10.1177/0194599812439004.
    1. Proença M, Pitta F, Koveliis D, Mantoni LC, Furlanetto KC, Zabatiero J, et al. Mucociliary clearance and its relation with the level of physical activity in daily life in healthy smokers and nonsmokers. Rev Port Pneumol. 2012;18((5)):233–8. doi: 10.1016/j.rppneu.2012.03.003.
    1. Zhou H, Wang X, Brighton L, Hazucha M, Jaspers I, Carson JL. Increased nasal epithelial ciliary beat frequency associated with lifestyle tobacco smoke exposure. Inhal Toxicol. 2009;21((10)):875–81. doi: 10.1080/08958370802555898.
    1. Piotrowska WJ, Kurmanowska Z, Marczak Z, Gorski P, Antaczak A. Rhinosinusitis in COPD: symptoms, mucosal changes, nasal lavage, cells and eicosanoids. Intern. J. COPD. 2010;5:107–17.
    1. Alfaro-Monge JM, Soda-Merhy A. The comparative testo f nasal mucociliary function in healthy subjects, smokers and non-smokers. Acta Otolryngol Esp. 1995;46((3)):187–89.
    1. Ramos EMC, Toledo AC, Xavier RF, Fosco LC, Vieira RP, Ramos D, et al. Reversibility of impared nasal mucociliary clearance in smokers followinh a smoking cessation programme. Respirology. 2011;16:849–55. doi: 10.1111/j.1440-1843.2011.01985.x.
    1. Ito JT, Ramos D, Lima FF, Rodrigues FM, Gomes PR, Moreira GL, et al. Nasal mucociliary clearance in subjects with COPD after smoking cessation. Respir Care. 2015;60((3)):399–405. doi: 10.4187/respcare.03266.
    1. Agius AM, Smallman LA, Pahor AL. Age, smoking and nasal ciliary beat frequency. Clin Otolaryngol. 1998;23((3)):227–30. doi: 10.1046/j.1365-2273.1998.00141.x.
    1. Rubin BK, Ramirez O, Zayas JG, Finegan B, King M. Respiratory mucus from asymptomatic smokers is better hydrated and more easily cleared by mucociliary action. Am Rev Respir Dis. 1992;145((3)):545–47. doi: 10.1164/ajrccm/145.3.545.
    1. Gamble E, Grootendorst DC, Hattotuwa K, ÓShaughnessy T, Ram FSF, Qiu Y, et al. Airway mucosal inflammation in COPD is similar in smokers ande ex-smokers: a pooled analysis. Eur Respir J. 2007;30((3)):467–71. doi: 10.1183/09031936.00013006.
    1. Laperre TS, Postma DS, Gosman MME, Snoeck-Stroband JB, ten Hacken NHT, Hiemstra PS, et al. Relation between duration of smoking cessation and bronchial inflammation in COPD. Thorax. 2006;61((2)):115–21. doi: 10.1136/thx.2005.040519.
    1. Pavia D, Bateman JRM, Lennard-Jone AM, Agnew JE, Clarke SW. Effect of selective and non-selective beta blockade on pulmonary function and tracheobronchial mucociliary clearance in healthy subjects. Thorax. 1986;41((4)):301–5. doi: 10.1136/thx.41.4.301.
    1. Goto DM, Torres GM, Seguro AC, Saldiva PH, Lorenzi-Filho G, Nakagawa NK. Furosemide impairs nasal mucociliary clearance in humans. Respir Physiol Neurobiol. 2010;170((3)):246–52. doi: 10.1016/j.resp.2010.01.013.

Source: PubMed

3
Iratkozz fel