Temporal variability and predictors of urinary bisphenol A concentrations in men and women

Shruthi Mahalingaiah, John D Meeker, Kimberly R Pearson, Antonia M Calafat, Xiaoyun Ye, John Petrozza, Russ Hauser, Shruthi Mahalingaiah, John D Meeker, Kimberly R Pearson, Antonia M Calafat, Xiaoyun Ye, John Petrozza, Russ Hauser

Abstract

Background: Bisphenol A (BPA) is used to manufacture polymeric materials, such as polycarbonate plastics, and is found in a variety of consumer products. Recent data show widespread BPA exposure among the U.S. population.

Objective: Our goal in the present study was to determine the temporal variability and predictors of BPA exposure.

Methods: We measured urinary concentrations of BPA among male and female patients from the Massachusetts General Hospital Fertility Center.

Results: Between 2004 and 2006, 217 urine samples were collected from 82 subjects: 45 women (145 samples) and 37 men (72 samples). Of these, 24 women and men were partners and contributed 42 pairs of samples collected on the same day. Ten women became pregnant during the follow-up period. Among the 217 urine samples, the median BPA concentration was 1.20 microg/L, ranging from below the limit of detection (0.4 microg/L) to 42.6 microg/L. Age, body mass index, and sex were not significant predictors of urinary BPA concentrations. BPA urinary concentrations among pregnant women were 26% higher (-26%, +115%) than those among the same women when not pregnant (p > 0.05). The urinary BPA concentrations of the female and male partner on the same day were correlated (r = 0.36; p = 0.02). The sensitivity of classifying a subject in the highest tertile using a single urine sample was 0.64.

Conclusion: We found a nonsignificant increase in urinary BPA concentrations in women while pregnant compared with nonpregnant samples from the same women. Samples collected from partners on the same day were correlated, suggesting shared sources of exposure. Finally, a single urine sample showed moderate sensitivity for predicting a subject's tertile categorization.

Keywords: bisphenol A; endocrine disruptors; environment; human; pregnancy.

Figures

Figure 1
Figure 1
Within-couple variability shown by urinary SG-adjusted BPA concentrations among female (diamonds and solid lines) and male (squares and broken lines) partners with at least two urine samples collected on the same day (n = 11 couples).

References

    1. Arakawa C, Fujimaki K, Yoshinaga J, Imai H, Serizawa S, Shiraishi H. Daily urinary excretion of bisphenol A. Environ Health Prevent Med. 2004;9:22–26.
    1. Bae B, Jeong JH, Lee SJ. The quantification and characterization of endocrine disruptor bisphenol-A leaching from epoxy resin. Water Sci Technol. 2002;46(11–12):381–387.
    1. Boeniger MF, Lowry LK, Rosenberg J. Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review. Am Ind Hyg Assoc J. 1993;54(10):615–627.
    1. Brede C, Fjeldal P, Skjevrak I, Herikstad H. Increased migration levels of bisphenol A from polycarbonate baby bottles after dishwashing, boiling and brushing. Food Addit Contam. 2003;20(7):684–689.
    1. Brotons JA, Olea-Serrano MF, Villalobos M, Pedraza V, Olea N. Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect. 1995;103:608–612.
    1. Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect. 2005;113:391–395.
    1. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect. 2008;116:39–44.
    1. Dodds EC, Lawson W. Synthetic estrogenic agents without the phenanthrene nucleus. Nature. 1936;137:996.
    1. Factor A. Mechanisms of thermal and photodegredations of bisphenol A polycarbonate. In: Clough RL, Billingham NC, Gillen KT, editors. Polymer Durability, Degradation, Stabilization, and Lifetime Prediction. Advances in Chemistry Series 249. New York: Oxford University Press; 1998. pp. 59–76.
    1. Hauser R, Meeker JD, Park S, Silva MJ, Calafat AM. Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ Health Perspect. 2004;112:1734–1740.
    1. Hong EJ, Park SH, Choi KC, Leung PC, Jeung EB. Identification of estrogen-regulated genes by microarray analysis of the uterus of immature rats exposed to endocrine disrupting chemicals. Reprod Biol Endocrinol. 2006;4:49.
    1. Hornung RW, Reed LD. Estimation of average concentration in the presence of nondetectable values. App Occup Environ Hyg. 1990;5:46–51.
    1. Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod. 2002;17(11):2839–2841.
    1. Joskow R, Barr DB, Barr JR, Calafat AM, Needham LL, Rubin C. Exposure to bisphenol A from bis-glycidyl dimethacrylate-based dental sealants. J Am Dent Assoc. 2006;137(3):353–362.
    1. Kang JH, Kito K, Kondo F. Factors influencing the migration of bisphenol A from cans. J Food Prot. 2003;66(8):1444–1447.
    1. Kang JH, Kondo F, Katayama Y. Human exposure to bisphenol A. Toxicology. 2006;226(2–3):79–89.
    1. Kim YH, Kim CS, Park S, Han SY, Pyo MY, Yang M. Gender differences in the levels of bisphenol A metabolites in urine. Biochem Biophys Res Commun. 2003;312(2):441–448.
    1. Lopez-Cervantes J, Paseiro-Losada P. Determination of bisphenol A in, and its migration from, PVC stretch film used for food packaging. Food Addit Contam. 2003;20(6):596–606.
    1. Meeker JD, Barr DB, Ryan L, Herrick RF, Bennett DH, Bravo R, et al. Temporal variability of urinary levels of nonpersistent insecticides in adult men. J Expo Anal Environ Epidemiol. 2005;15(3):271–281.
    1. National Research Council. Human Biomonitoring for Environmental Chemicals. Washington, DC: National Academic Press; 2006.
    1. Ouchi K, Watanabe S. Measurement of bisphenol A in human urine using liquid chromatography with multi-channel coulometric electrochemical detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;780(2):365–370.
    1. Samuelsen M, Olsen C, Holme JA, Meussen-Elholm E, Bergmann A, Hongslo JK. Estrogen-like properties of brominated analogs of bisphenol A in the MCF-7 human breast cancer cell line. Cell Biol Toxicol. 2001;17(3):139–151.
    1. Sasaki N, Okuda K, Kato T, Kakishima H, Okuma H, Abe K, et al. Salivary bisphenol-A levels detected by ELISA after restoration with composite resin. J Mater Sci Mater Med. 2005;16(4):297–300.
    1. Schonfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I. Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect. 2002;110:A703–707.
    1. Singleton DW, Feng Y, Yang J, Puga A, Lee AV, Khan SA. Gene expression profiling reveals novel regulation by bisphenol-A in estrogen receptor-alpha-positive human cells. Environ Res. 2006;100(1):86–92.
    1. Sun Y, Irie M, Kishikawa N, Wada M, Kuroda N, Nakashima K. Determination of bisphenol A in human breast milk by HPLC with column-switching and fluorescence detection. Biomed Chromatogr. 2004;18(8):501–507.
    1. Takeuchi T, Tsutsumi O. Serum bisphenol A concentrations showed gender differences, possibly linked to androgen levels. Biochem Biophys Res Commun. 2002;291(1):76–78.
    1. Takeuchi T, Tsutsumi O, Ikezuki Y, Takai Y, Taketani Y. Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocr J. 2004;51(2):165–169.
    1. Teass AW, DeBord DG, Brown KK, Cheever KL, Stettler LE, Savage RE, et al. Biological monitoring for occupational exposures to o-toluidine and aniline. Int Arch Occup Environ Health. 1993;65(suppl 1):S115–S118.
    1. Volkel W, Colnot T, Csanady GA, Filser JG, Dekant W. Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol. 2002;15(10):1281–1287.
    1. Wolff MS, Teitelbaum SL, Windham G, Pinney SM, Britton JA, Chelimo C, et al. Pilot study of urinary biomarkers of phytoestrogens, phthalates, and phenols in girls. Environ Health Perspect. 2007;115:116–121.
    1. Yang M, Kim SY, Lee SM, Chang SS, Kawamoto T, Jang JY, et al. Biological monitoring of bisphenol A in a Korean population. Arch Environ Contam Toxicol. 2003;44(4):546–551.
    1. Ye XY, Kuklenyik Z, Needham LL, Calafat AM. Automated online column-switching HPLC-MS/MS method with peak focusing for the determination of nine environmental phenols in urine. Anal Chem. 2005;77:5407–5413.

Source: PubMed

3
Iratkozz fel