Effect of Weight Loss, Exercise, or Both on Undercarboxylated Osteocalcin and Insulin Secretion in Frail, Obese Older Adults

Georgia Colleluori, Nicola Napoli, Uma Phadnis, Reina Armamento-Villareal, Dennis T Villareal, Georgia Colleluori, Nicola Napoli, Uma Phadnis, Reina Armamento-Villareal, Dennis T Villareal

Abstract

Background: Obesity exacerbates age-related decline in glucometabolic control. Undercarboxylated osteocalcin (UcOC) regulates pancreatic insulin secretion. The long-term effect of lifestyle interventions on UcOC and insulin secretion has not been investigated.

Methods: One hundred seven frail, obese older adults were randomized into the control (N = 27), diet (N = 26), exercise (N = 26), and diet-exercise (N = 28) groups for 1 year. Main outcomes included changes in UcOC and disposition index (DI).

Results: UcOC increased in the diet group (36 ± 11.6%) but not in the other groups (P < 0.05 between groups). Although similar increases in DI occurred in the diet-exercise and diet groups at 6 months, DI increased more in the diet-exercise group (92.4 ± 11.4%) than in the diet group (61.9 ± 15.3%) at 12 months (P < 0.05). UcOC and body composition changes predicted DI variation in the diet group only (R2 = 0.712), while adipocytokines and physical function changes contributed to DI variation in both the diet (∆R2 = 0.140 and 0.107) and diet-exercise (∆R2 = 0.427 and 0.243) groups (P < 0.05 for all).

Conclusions: Diet, but not exercise or both, increases UcOC, whereas both diet and diet-exercise increase DI. UcOC accounts for DI variation only during active weight loss, while adipocytokines and physical function contribute to diet-exercise-induced DI variation, highlighting different mechanisms for lifestyle-induced improvements in insulin secretion. This trial was registered with ClinicalTrials.gov number NCT00146107.

Figures

Figure 1
Figure 1
Mean percent changes in undercarboxylated osteocalcin (UcOC) (a) and disposition index (DI) (b) during the 1-year interventions. In (a), the changes in UcOC in the diet group differed significantly from the changes in UcOC in the diet-exercise, exercise, and control groups. In (b), the changes in DI in the diet-exercise group differed significantly from the changes in DI in the diet, exercise, and control groups. I bars indicate standard errors.

References

    1. Lee N. K., Sowa H., Hinoi E., et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–469. doi: 10.1016/j.cell.2007.05.047.
    1. Liu J. M., Rosen C. J., Ducy P., Kousteni S., Karsenty G. Regulation of glucose handling by the skeleton: insights from mouse and human studies. Diabetes. 2016;65:3225–3232. doi: 10.2337/db16-0053.
    1. Ferron M., Wei J., Yoshizawa T., et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142:296–308. doi: 10.1016/j.cell.2010.06.003.
    1. Mera P., Laue K., Ferron M., et al. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metabolism. 2016;23:1078–1092. doi: 10.1016/j.cmet.2016.05.004.
    1. Kindblom J. M., Ohlsson C., Ljunggren O., et al. Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. Journal of Bone and Mineral Research. 2009;24:785–791. doi: 10.1359/jbmr.081234.
    1. Kanazawa I., Yamaguchi T., Yamauchi M., et al. Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporosis International. 2011;22:187–194. doi: 10.1007/s00198-010-1184-7.
    1. Yeap B. B., Alfonso H., Chubb S. A., et al. Higher serum undercarboxylated osteocalcin and other bone turnover markers are associated with reduced diabetes risk and lower estradiol concentrations in older men. The Journal of Clinical Endocrinology and Metabolism. 2015;100:63–71. doi: 10.1210/jc.2014-3019.
    1. Soysal P., Isik A. T., Carvalho A. F., et al. Oxidative stress and frailty: a systematic review and synthesis of the best evidence. Maturitas. 2017;99:66–72. doi: 10.1016/j.maturitas.2017.01.006.
    1. Villareal D. T., Chode S., Parimi N., et al. Weight loss, exercise, or both and physical function in obese older adults. The New England Journal of Medicine. 2011;364:1218–1229. doi: 10.1056/NEJMoa1008234.
    1. Villareal D. T., Banks M., Siener C., Sinacore D. R., Klein S. Physical frailty and body composition in obese elderly men and women. Obesity Research. 2004;12:913–920. doi: 10.1038/oby.2004.111.
    1. Flegal K. M., Kruszon-Moran D., Carroll M. D., Fryar C. D., Ogden C. L. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315:2284–2291. doi: 10.1001/jama.2016.6458.
    1. Villareal D. T., Apovian C. M., Kushner R. F., Klein S. Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society. Obesity Research. 2005;13(11):1849–1863. doi: 10.1038/oby.2005.228.
    1. Bouchonville M., Armamento-Villareal R., Shah K., et al. Weight loss, exercise or both and cardiometabolic risk factors in obese older adults: results of a randomized controlled trial. International Journal of Obesity. 2014;38:423–431. doi: 10.1038/ijo.2013.122.
    1. Kim Y. S., Nam J. S., Yeo D. W., Kim K. R., Suh S. H., Ahn C. W. The effects of aerobic exercise training on serum osteocalcin, adipocytokines and insulin resistance on obese young males. Clinical Endocrinology. 2015;82:686–694. doi: 10.1111/cen.12601.
    1. Shah K., Armamento-Villareal R., Parimi N., et al. Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip bone mineral density induced by weight loss despite decline in bone-active hormones. Journal of Bone and Mineral Research. 2011;26:2851–2859. doi: 10.1002/jbmr.475.
    1. Villareal D. T., Fontana L., Das S. K., et al. Effect of two-year caloric restriction on bone metabolism and bone mineral density in non-obese younger adults: a randomized clinical trial. Journal of Bone and Mineral Research. 2016;31:40–51. doi: 10.1002/jbmr.2701.
    1. Levinger I., Jerums G., Stepto N. K., et al. The effect of acute exercise on undercarboxylated osteocalcin and insulin sensitivity in obese men. Journal of Bone and Mineral Research. 2014;29:2571–2576. doi: 10.1002/jbmr.2285.
    1. Levinger I., Scott D., Nicholson G. C., et al. Undercarboxylated osteocalcin, muscle strength and indices of bone health in older women. Bone. 2014;64:8–12. doi: 10.1016/j.bone.2014.03.008.
    1. Levinger I., Zebaze R., Jerums G., Hare D. L., Selig S., Seeman E. The effect of acute exercise on undercarboxylated osteocalcin in obese men. Osteoporosis International. 2011;22:1621–1626. doi: 10.1007/s00198-010-1370-7.
    1. Bergman R. N., Ader M., Huecking K., Van C. G. Accurate assessment of beta-cell function: the hyperbolic correction. Diabetes. 2002;51(Supplement 1):S212–S220. doi: 10.2337/diabetes.51.2007.S212.
    1. Brown M., Sinacore D. R., Binder E. F., Kohrt W. M. Physical and performance measures for the identification of mild to moderate frailty. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences. 2000;55:M350–M355. doi: 10.1093/gerona/55.6.M350.
    1. American Diabetes Association. Standards of medical care in diabetes - 2017. Diabetes Care. 2017;40(Supplement 1) doi: 10.2337/dc17-S001.
    1. Matsuda M., DeFronzo R. A. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22:1462–1470. doi: 10.2337/diacare.22.9.1462.
    1. Tura A., Kautzky-Willer A., Pacini G. Insulinogenic indices from insulin and C-peptide: comparison of beta-cell function from OGTT and IVGTT. Diabetes Research and Clinical Practice. 2006;72:298–301. doi: 10.1016/j.diabres.2005.10.005.
    1. Utzschneider K. M., Prigeon R. L., Faulenbach M. V., et al. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care. 2009;32:335–341. doi: 10.2337/dc08-1478.
    1. Delmas P. D., Eastell R., Garnero P., Seibel M. J., Stepan J. The use of biochemical markers of bone turnover in osteoporosis. Osteoporosis International. 2000;11(Supplement 6):S2–17. doi: 10.1007/s001980070002.
    1. Villareal D. T., Banks M., Sinacore D. R., Siener C., Klein S. Effect of weight loss and exercise on frailty in obese older adults. Archives of Internal Medicine. 2006;166:860–866. doi: 10.1001/archinte.166.8.860.
    1. Villareal D. T., Holloszy J. O. DHEA enhances effects of weight training on muscle mass and strength in elderly women and men. American Journal of Physiology Endocrinology and Metabolism. 2006;291:E1003–E1008. doi: 10.1152/ajpendo.00100.2006.
    1. Armamento-Villareal R., Aguirre L., Napoli N., et al. Changes in thigh muscle volume predict bone mineral density response to lifestyle therapy in frail, obese older adults. Osteoporosis International. 2014;25:551–558. doi: 10.1007/s00198-013-2450-2.
    1. Villareal D. T., Banks M. R., Patterson B. W., Polonsky K. S., Klein S. Weight loss therapy improves pancreatic endocrine function in obese older adults. Obesity (Silver Spring) 2008;16:1349–1354. doi: 10.1038/oby.2008.226.
    1. Polonsky K. S., Sturis J., Bell G. I. Seminars in Medicine of the Beth Israel Hospital, Boston. Non-insulin-dependent diabetes mellitus - a genetically programmed failure of the beta cell to compensate for insulin resistance. The New England Journal of Medicine. 1996;334:777–783. doi: 10.1056/NEJM199603213341207.
    1. Centi A. J., Booth S. L., Gundberg C. M., Saltzman E., Nicklas B., Shea M. K. Osteocalcin carboxylation is not associated with body weight or percent fat changes during weight loss in post-menopausal women. Endocrine. 2015;50:627–632. doi: 10.1007/s12020-015-0618-6.
    1. Aonuma H., Miyakoshi N., Hongo M., Kasukawa Y., Shimada Y. Low serum levels of undercarboxylated osteocalcin in postmenopausal osteoporotic women receiving an inhibitor of bone resorption. The Tohoku Journal of Experimental Medicine. 2009;218:201–205. doi: 10.1620/tjem.218.201.
    1. Schafer A. L., Sellmeyer D. E., Schwartz A. V., et al. Change in undercarboxylated osteocalcin is associated with changes in body weight, fat mass, and adiponectin: parathyroid hormone (1-84) or alendronate therapy in postmenopausal women with osteoporosis (the PaTH study) The Journal of Clinical Endocrinology and Metabolism. 2011;96:E1982–E1989. doi: 10.1210/jc.2011-0587.
    1. Sabek O. M., Nishimoto S. K., Fraga D., Tejpal N., Ricordi C., Gaber A. O. Osteocalcin effect on human beta-cells mass and function. Endocrinology. 2015;156:3137–3146. doi: 10.1210/EN.2015-1143.
    1. Malin S. K., Solomon T. P., Blaszczak A., Finnegan S., Filion J., Kirwan J. P. Pancreatic beta-cell function increases in a linear dose-response manner following exercise training in adults with prediabetes. American Journal of Physiology Endocrinology and Metabolism. 2013;305:E1248–E1254. doi: 10.1152/ajpendo.00260.2013.
    1. Kahn S. E., Prigeon R. L., McCulloch D. K., et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes. 1993;42:1663–1672. doi: 10.2337/diab.42.11.1663.
    1. Lyssenko V., Almgren P., Anevski D., et al. Predictors of and longitudinal changes in insulin sensitivity and secretion preceding onset of type 2 diabetes. Diabetes. 2005;54(1):166–174. doi: 10.2337/diabetes.54.1.166.
    1. Mizgier M. L., Casas M., Contreras-Ferrat A., Llanos P., Galgani J. E. Potential role of skeletal muscle glucose metabolism on the regulation of insulin secretion. Obesity Reviews. 2014;15:587–597. doi: 10.1111/obr.12166.
    1. Bouzakri K., Plomgaard P., Berney T., Donath M. Y., Pedersen B. K., Halban P. A. Bimodal effect on pancreatic beta-cells of secretory products from normal or insulin-resistant human skeletal muscle. Diabetes. 2011;60:1111–1121. doi: 10.2337/db10-1178.
    1. Delghingaro-Augusto V., Decary S., Peyot M. L., et al. Voluntary running exercise prevents beta-cell failure in susceptible islets of the Zucker diabetic fatty rat. American Journal of Physiology Endocrinology and Metabolism. 2012;302:E254–E264. doi: 10.1152/ajpendo.00360.2011.
    1. Traustadottir T., Davies S. S., Su Y., et al. Oxidative stress in older adults: effects of physical fitness. Age (Dordrecht, Netherlands) 2012;34:969–982. doi: 10.1007/s11357-011-9277-6.

Source: PubMed

3
Iratkozz fel