Rationale and design of the Exercise Intensity Trial (EXCITE): A randomized trial comparing the effects of moderate versus moderate to high-intensity aerobic training in women with operable breast cancer

Lee W Jones, Pamela S Douglas, Neil D Eves, P Kelly Marcom, William E Kraus, James E Herndon 2nd, Brant A Inman, Jason D Allen, Jeffrey Peppercorn, Lee W Jones, Pamela S Douglas, Neil D Eves, P Kelly Marcom, William E Kraus, James E Herndon 2nd, Brant A Inman, Jason D Allen, Jeffrey Peppercorn

Abstract

Background: The Exercise Intensity Trial (EXcITe) is a randomized trial to compare the efficacy of supervised moderate-intensity aerobic training to moderate to high-intensity aerobic training, relative to attention control, on aerobic capacity, physiologic mechanisms, patient-reported outcomes, and biomarkers in women with operable breast cancer following the completion of definitive adjuvant therapy.

Methods/design: Using a single-center, randomized design, 174 postmenopausal women (58 patients/study arm) with histologically confirmed, operable breast cancer presenting to Duke University Medical Center (DUMC) will be enrolled in this trial following completion of primary therapy (including surgery, radiation therapy, and chemotherapy). After baseline assessments, eligible participants will be randomized to one of two supervised aerobic training interventions (moderate-intensity or moderate/high-intensity aerobic training) or an attention-control group (progressive stretching). The aerobic training interventions will include 150 mins.wk⁻¹ of supervised treadmill walking per week at an intensity of 60%-70% (moderate-intensity) or 60% to 100% (moderate to high-intensity) of the individually determined peak oxygen consumption (VO₂peak) between 20-45 minutes/session for 16 weeks. The progressive stretching program will be consistent with the exercise interventions in terms of program length (16 weeks), social interaction (participants will receive one-on-one instruction), and duration (20-45 mins/session). The primary study endpoint is VO₂peak, as measured by an incremental cardiopulmonary exercise test. Secondary endpoints include physiologic determinants that govern VO₂peak, patient-reported outcomes, and biomarkers associated with breast cancer recurrence/mortality. All endpoints will be assessed at baseline and after the intervention (16 weeks).

Discussion: EXCITE is designed to investigate the intensity of aerobic training required to induce optimal improvements in VO₂peak and other pertinent outcomes in women who have completed definitive adjuvant therapy for operable breast cancer. Overall, this trial will inform and refine exercise guidelines to optimize recovery in breast and other cancer survivors following the completion of primary cytotoxic therapy.

Trial registration: NCT01186367.

Figures

Figure 1
Figure 1
Study Flow.

References

    1. Balady GJ. Survival of the fittest--more evidence. N Engl J Med. 2002;346(11):852–854. doi: 10.1056/NEJM200203143461111.
    1. Kraus WE, Douglas PS. Where does fitness fit in? N Engl J Med. 2005;353(5):517–519. doi: 10.1056/NEJMe058132.
    1. Jones LW, Eves ND, Haykowsky M, Freedland SJ, Mackey JR. Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncol. 2009;10(6):598–605. doi: 10.1016/S1470-2045(09)70031-2.
    1. Gulati M, Pandey DK, Arnsdorf MF, Lauderdale DS, Thisted RA, Wicklund RH, Al-Hani AJ, Black HR. Exercise capacity and the risk of death in women: the St James Women Take Heart Project. Circulation. 2003;108(13):1554–1559. doi: 10.1161/01.CIR.0000091080.57509.E9.
    1. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801. doi: 10.1056/NEJMoa011858.
    1. Ekelund LG, Haskell WL, Johnson JL, Whaley FS, Criqui MH, Sheps DS. Physical fitness as a predictor of cardiovascular mortality in asymptomatic North American men. The Lipid Research Clinics Mortality Follow-up Study. N Engl J Med. 1988;319(21):1379–1384. doi: 10.1056/NEJM198811243192104.
    1. Mora S, Redberg RF, Cui Y, Whiteman MK, Flaws JA, Sharrett AR, Blumenthal RS. Ability of exercise testing to predict cardiovascular and all-cause death in asymptomatic women: a 20-year follow-up of the lipid research clinics prevalence study. Jama. 2003;290(12):1600–1607. doi: 10.1001/jama.290.12.1600.
    1. Sandvik L, Erikssen J, Thaulow E, Erikssen G, Mundal R, Rodahl K. Physical fitness as a predictor of mortality among healthy, middle-aged Norwegian men. N Engl J Med. 1993;328(8):533–537. doi: 10.1056/NEJM199302253280803.
    1. Jones LW, Haykowsky MJ, Swartz JJ, Douglas PS, Mackey JR. Early breast cancer therapy and cardiovascular injury. J Am Coll Cardiol. 2007;50(15):1435–1441. doi: 10.1016/j.jacc.2007.06.037.
    1. Ganz PA. Harnessing personalised medicine to prevent late effects. Lancet Oncol. pp. 7–9.
    1. Jones LW, Haykowsky M, Peddle CJ, Joy AA, Pituskin EN, Tkachuk LM, Courneya KS, Slamon DJ, Mackey JR. Cardiovascular risk profile of patients with HER2/neu-positive breast cancer treated with anthracycline-taxane-containing adjuvant chemotherapy and/or trastuzumab. Cancer Epidemiol Biomarkers Prev. 2007;16(5):1026–1031. doi: 10.1158/1055-9965.EPI-06-0870.
    1. Jones LW, Haykowsky M, Pituskin EN, Jendzjowsky NG, Tomczak CR, Haennel RG, Mackey JR. Cardiovascular reserve and risk profile of postmenopausal women after chemoendocrine therapy for hormone receptor--positive operable breast cancer. Oncologist. 2007;12(10):1156–1164. doi: 10.1634/theoncologist.12-10-1156.
    1. Herrero F, Balmer J, San Juan AF, Foster C, Fleck SJ, Perez M, Canete S, Earnest CP, Lucia A. Is cardiorespiratory fitness related to quality of life in survivors of breast cancer? J Strength Cond Res. 2006;20(3):535–540. doi: 10.1519/R-18215.1.
    1. Holmes MD, Chen WY, Feskanich D, Kroenke CH, Colditz GA. Physical activity and survival after breast cancer diagnosis. Jama. 2005;293(20):2479–2486. doi: 10.1001/jama.293.20.2479.
    1. Irwin ML, Smith AW, McTiernan A, Ballard-Barbash R, Cronin K, Gilliland FD, Baumgartner RN, Baumgartner KB, Bernstein L. Influence of pre- and postdiagnosis physical activity on mortality in breast cancer survivors: the health, eating, activity, and lifestyle study. J Clin Oncol. 2008;26(24):3958–3964. doi: 10.1200/JCO.2007.15.9822.
    1. Haykowsky MJ, Mackey JR, Thompson RB, Jones LW, Paterson DI. Adjuvant trastuzumab induces ventricular remodeling despite aerobic exercise training. Clin Cancer Res. 2009;15(15):4963–4967. doi: 10.1158/1078-0432.CCR-09-0628.
    1. McNeely ML, Campbell KL, Rowe BH, Klassen TP, Mackey JR, Courneya KS. Effects of exercise on breast cancer patients and survivors: a systematic review and meta-analysis. Cmaj. 2006;175(1):34–41.
    1. Irwin ML, Varma K, Alvarez-Reeves M, Cadmus L, Wiley A, Chung GG, Dipietro L, Mayne ST, Yu H. Randomized Controlled Trial of Aerobic Exercise on Insulin and Insulin-like Growth Factors in Breast Cancer Survivors: The Yale Exercise and Survivorship Study. Cancer Epidemiol Biomarkers Prev. 2009;18(1):306–313. doi: 10.1158/1055-9965.EPI-08-0531.
    1. Ligibel JA, Campbell N, Partridge A, Chen WY, Salinardi T, Chen H, Adloff K, Keshaviah A, Winer EP. Impact of a mixed strength and endurance exercise intervention on insulin levels in breast cancer survivors. J Clin Oncol. 2008;26(6):907–912. doi: 10.1200/JCO.2007.12.7357.
    1. Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvao DA, Pinto BM, Irwin ML, Wolin KY, Segal RJ, Lucia A, American college of sports medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. pp. 1409–1426.
    1. Rognmo O, Hetland E, Helgerud J, Hoff J, Slordahl SA. High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil. 2004;11(3):216–222. doi: 10.1097/01.hjr.0000131677.96762.0c.
    1. Hambrecht R, Walther C, Mobius-Winkler S, Gielen S, Linke A, Conradi K, Erbs S, Kluge R, Kendziorra K, Sabri O. et al.Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: a randomized trial. Circulation. 2004;109(11):1371–1378. doi: 10.1161/01.CIR.0000121360.31954.1F.
    1. Giannuzzi P, Temporelli PL, Corra U, Tavazzi L. Antiremodeling effect of long-term exercise training in patients with stable chronic heart failure: results of the Exercise in Left Ventricular Dysfunction and Chronic Heart Failure (ELVD-CHF) Trial. Circulation. 2003;108(5):554–559. doi: 10.1161/01.CIR.0000081780.38477.FA.
    1. Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, Tjonna AE, Helgerud J, Slordahl SA, Lee SJ. et al.Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–3094. doi: 10.1161/CIRCULATIONAHA.106.675041.
    1. Gordon A, Tyni-Lenne R, Jansson E, Jensen-Urstad M, Kaijser L. Beneficial effects of exercise training in heart failure patients with low cardiac output response to exercise - a comparison of two training models. J Intern Med. 1999;246(2):175–182. doi: 10.1046/j.1365-2796.1999.00555.x.
    1. Duscha BD, Slentz CA, Johnson JL, Houmard JA, Bensimhon DR, Knetzger KJ, Kraus WE. Effects of exercise training amount and intensity on peak oxygen consumption in middle-age men and women at risk for cardiovascular disease. Chest. 2005;128(4):2788–2793. doi: 10.1378/chest.128.4.2788.
    1. Tjonna AE, Lee SJ, Rognmo O, Stolen TO, Bye A, Haram PM, Loennechen JP, Al-Share QY, Skogvoll E, Slordahl SA. et al.Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008;118(4):346–354. doi: 10.1161/CIRCULATIONAHA.108.772822.
    1. Jones LW, Courneya KS. Exercise counseling and programming preferences of cancer survivors. Cancer Pract. 2002;10(4):208–215. doi: 10.1046/j.1523-5394.2002.104003.x.
    1. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, Macera CA. Castaneda-Sceppa C: Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116(9):1094–1105. doi: 10.1161/CIRCULATIONAHA.107.185650.
    1. Kreider ME, Grippi MA. Impact of the new ATS/ERS pulmonary function test interpretation guidelines. Respir Med. 2007;101(11):2336–2342. doi: 10.1016/j.rmed.2007.06.019.
    1. Parisi AF, Moynihan PF, Feldman CL, Folland ED. Approaches to determination of left ventricular volume and ejection fraction by real-time two-dimensional echocardiography. Clin Cardiol. 1979;2(4):257–263. doi: 10.1002/clc.4960020404.
    1. Schiller NB, Acquatella H, Ports TA, Drew D, Goerke J, Ringertz H, Silverman NH, Brundage B, Botvinick EH, Boswell R. et al.Left ventricular volume from paired biplane two-dimensional echocardiography. Circulation. 1979;60(3):547–555.
    1. Allen JD, Cobb FR, Gow AJ. Regional and whole-body markers of nitric oxide production following hyperemic stimuli. Free Radic Biol Med. 2005;38(9):1164–1169. doi: 10.1016/j.freeradbiomed.2004.12.018.
    1. Duscha BD, Kraus WE, Keteyian SJ, Sullivan MJ, Green HJ, Schachat FH, Pippen AM, Brawner CA, Blank JM, Annex BH. Capillary density of skeletal muscle: a contributing mechanism for exercise intolerance in class II-III chronic heart failure independent of other peripheral alterations. J Am Coll Cardiol. 1999;33(7):1956–1963. doi: 10.1016/S0735-1097(99)00101-1.
    1. Kraus WE, Torgan CE, Duscha BD, Norris J, Brown SA, Cobb FR, Bales CW, Annex BH, Samsa GP, Houmard JA. et al.Studies of a targeted risk reduction intervention through defined exercise (STRRIDE) Med Sci Sports Exerc. 2001;33(10):1774–1784. doi: 10.1097/00005768-200110000-00025.
    1. Brady MJ, Cella DF, Mo F, Bonomi AE, Tulsky DS, Lloyd SR, Deasy S, Cobleigh M, Shiomoto G. Reliability and validity of the Functional Assessment of Cancer Therapy-Breast quality-of-life instrument. J Clin Oncol. 1997;15(3):974–986.
    1. Yellen SB, Cella DF, Webster K, Blendowski C, Kaplan E. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. J Pain Symptom Manage. 1997;13(2):63–74. doi: 10.1016/S0885-3924(96)00274-6.
    1. Radloff LS. The CES-D scale: A self report depression scale for research in the general population. Applied Psychological Measurement. 1977. pp. 385–401.
    1. Nikolinakos PG, Altorki N, Yankelevitz D, Tran HT, Yan S, Rajagopalan D, Bordogna W, Ottesen LH, Heymach JV. Plasma cytokine and angiogenic factor profiling identifies markers associated with tumor shrinkage in early-stage non-small cell lung cancer patients treated with pazopanib. Cancer Res. pp. 2171–2179.
    1. Hanrahan EO, Lin HY, Kim ES, Yan S, Du DZ, McKee KS, Tran HT, Lee JJ, Ryan AJ, Langmuir P, Distinct patterns of cytokine and angiogenic factor modulation and markers of benefit for vandetanib and/or chemotherapy in patients with non-small-cell lung cancer. J Clin Oncol. pp. 193–201.
    1. Jones LW, Peppercorn J. Exercise research: early promise warrants further investment. Lancet Oncol. pp. 408–410.
    1. Jones LW, Eves ND, Peterson BL, Garst J, Crawford J, West MJ, Mabe S, Harpole D, Kraus WE, Douglas PS. Safety and feasibility of aerobic training on cardiopulmonary function and quality of life in postsurgical nonsmall cell lung cancer patients: a pilot study. Cancer. 2008;113(12):3430–3439. doi: 10.1002/cncr.23967.
    1. Jones LW, Peddle CJ, Eves ND, Haykowsky MJ, Courneya KS, Mackey JR, Joy AA, Kumar V, Winton TW, Reiman T. Effects of presurgical exercise training on cardiorespiratory fitness among patients undergoing thoracic surgery for malignant lung lesions. Cancer. 2007;110(3):590–598. doi: 10.1002/cncr.22830.

Source: PubMed

3
Iratkozz fel