Validation of two short questionnaires assessing physical activity in colorectal cancer patients

Hege Berg Henriksen, Sveinung Berntsen, Ingvild Paur, Manuela Zucknick, Anne Juul Skjetne, Siv Kjølsrud Bøhn, Christine Henriksen, Sigbjørn Smeland, Monica Hauger Carlsen, Rune Blomhoff, Hege Berg Henriksen, Sveinung Berntsen, Ingvild Paur, Manuela Zucknick, Anne Juul Skjetne, Siv Kjølsrud Bøhn, Christine Henriksen, Sigbjørn Smeland, Monica Hauger Carlsen, Rune Blomhoff

Abstract

Background: In order to investigate the impact of adherence to recommendations of physical activity and sedentary time on health outcomes in clinical trials, there is a need for feasible tools such as questionnaires that can give representative estimates of these measures. The primary aim of the present study was to validate two such questionnaires and their ability to estimate adherence to the recommendations of physical activity defined as moderate-to- vigorous physical activity or moderate physical activity of at least 150 min/week in colorectal cancer patients. Secondarily, self-reported sedentary time from the HUNT-PAQ was also evaluated.

Methods: Participants from 'The Norwegian dietary guidelines and colorectal cancer survival-study' (CRC-NORDIET study) completed two short questionnaires; the NORDIET-FFQ (n = 78) and the HUNT-PAQ (n = 77). The physical activity monitor SenseWear Armband Mini was used as the reference method during seven consecutive days.

Results: The NORDIET-FFQ provided better estimates of time in moderate-to- vigorous physical activity and moderate physical activity than the HUNT-PAQ. The NORDIET-FFQ was unable to rank individual time in moderate-to- vigorous physical activity and moderate physical activity (Spearman's rho = 0.08, p = 0.509 and Spearman's rho rho = 0.01, p = 0.402, respectively). All intensities were under-reported by the HUNT-PAQ, but ranking of individual time in moderate physical activity and sedentary time were acceptable among women only (Spearman's rho = 0.37, p = 0.027 and Spearman's rho = 0.36, p = 0.035, respectively). The HUNT-PAQ correctly classified 71% of those not meeting the recommendations (sensitivity), and the NORDIET-FFQ correctly classified 63% of those who met the recommendations (specificity). About 67% and 33% reported to meet the recommendation of moderate-to- vigorous physical activity with the NORDIET-FFQ and HUNT-PAQ, respectively, whereas 55% actually met the moderate-to- vigorous physical activity according to the SenseWear Armband Mini.

Conclusions: The NORDIET-FFQ provided better specificity and better estimates of PA than the HUNT-PAQ. The HUNT-PAQ provided better sensitivity, and provided better ranking of PA and sedentary time among women than NORDIET-FFQ. It is important to be aware of the limitations documented in the present study.

Trial registration: The study is registered on the National Institutes of Health Clinical Trials (Identifier: NCT01570010). Registered 4 April 2012.

Keywords: Physical activity; Physical activity recommendations; Sedentary time; SenseWear armband mini; Short questionnaire.

Conflict of interest statement

The CRC-NORDIET study is carried out in accordance with the Helsinki Declaration and informed consent was obtained from all participants. The study was approved by the Norwegian Regional Committees for Medical and Health Research Ethics, Protocol Approval 2011/836, and by the data protection officials at Oslo University Hospital and Akershus University Hospital. The study is registered on the National Institutes of Health Clinical Trials (http://www.clinicaltrials.gov; Identifier: NCT01570010). Registered 4 April 2012. All participants provided informed written consent prior to participation.The authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Bland-Altman plots depicting mean differences of the questionnaires minus SWA for physical activity; a MVPA minutes/week, NORDIET-FFQ, b moderate intensity physical activity in bouts of 10 min/week, NORDIET-FFQ; c vigorous intensity physical activity in bouts of 10 min per week, NORDIET-FFQ; d MVPA minutes per week, HUNT-PAQ; e moderate intensity physical activity in bouts of 10 min/week, HUNT-PAQ; f Sedentary time in hours/day, HUNT-PAQ. The solid line represents the mean, and the dashed lines represent the 1.96 SDs of the observations. Females denoted as ♀ and males denoted as ♂

References

    1. World Cancer Research Fund/American Institute for Cancer Research . Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington DC: American Institute for Cancer Research; 2007.
    1. Continuous Update Project Report . Food, nutrition, physical activity, and the prevention of colorectal Cancer. 2011.
    1. Kostråd for å fremme folkehelsen og forebygge kroniske sykdommer: metodologi og vitenskapelig kunnskapsgrunnlag. Oslo: Nasjonalt råd for ernæring, Helsedirektoratet; 2011.
    1. Anderson AS, Caswell S, Wells M, Steele RJC, Mac Askill S. “It makes you feel so full of life” LiveWell, a feasibility study of a personalised lifestyle programme for colorectal cancer survivors. Support Care Cancer. 2010;18(4):409–415. doi: 10.1007/s00520-009-0677-4.
    1. Boyle T, Fritschi L, Platell C, Heyworth J. Lifestyle factors associated with survival after colorectal cancer diagnosis. Br J Cancer. 2013;109(3):814–822. doi: 10.1038/bjc.2013.310.
    1. Lee J, Jeon JY, Meyerhardt JA. Diet and lifestyle in survivors of colorectal cancer. Hematol Oncol Clin North Am. 2015;29(1):1–27. doi: 10.1016/j.hoc.2014.09.005.
    1. Meyerhardt JA, Giovannucci EL, Holmes MD, Chan AT, Chan JA, Colditz GA, et al. Physical activity and survival after colorectal Cancer diagnosis. J Clin Oncol. 2006;24(22):3527–3534. doi: 10.1200/JCO.2006.06.0855.
    1. Meyerhardt JA, Heseltine D, Niedzwiecki D, Hollis D, Saltz LB, Mayer RJ, et al. Impact of physical activity on Cancer recurrence and survival in patients with stage III Colon Cancer: findings from CALGB 89803. J Clin Oncol. 2006;24(22):3535–3541. doi: 10.1200/JCO.2006.06.0863.
    1. Morey MC, Snyder DC, Sloane R, Cohen HJ, Peterson B, Hartman TJ, et al. Effects of home-based diet and exercise on functional outcomes among older, overweight long-term cancer survivors: RENEW: a randomized controlled trial. JAMA. 2009;301(18):1883–1891. doi: 10.1001/jama.2009.643.
    1. Mosher CE, Sloane R, Morey MC, Snyder DC, Cohen HJ, Miller PE, et al. Associations between lifestyle factors and quality of life among older long-term breast, prostate, and colorectal cancer survivors. Cancer. 2009;115(17):4001–4009. doi: 10.1002/cncr.24436.
    1. Schlesinger S, Walter J, Hampe J, von Schonfels W, Hinz S, Kuchler T, et al. Lifestyle factors and health-related quality of life in colorectal cancer survivors. Cancer Causes Control. 2014;25(1):99–110. doi: 10.1007/s10552-013-0313-y.
    1. Van Blarigan EL, Meyerhardt JA. Role of physical activity and diet after colorectal cancer diagnosis. J Clin Oncol. 2015;33(16):1825–1834. doi: 10.1200/JCO.2014.59.7799.
    1. van Waart H, Stuiver MM, van Harten WH, Geleijn E, Kieffer JM, Buffart LM, et al. Effect of low-intensity physical activity and moderate- to high-intensity physical exercise during adjuvant chemotherapy on physical fitness, fatigue, and chemotherapy completion rates: results of the PACES randomized clinical trial. J Clin Oncol. 2015;33(17):1918–1927. doi: 10.1200/JCO.2014.59.1081.
    1. Haydon AM, Macinnis RJ, English DR, Giles GG. Effect of physical activity and body size on survival after diagnosis with colorectal cancer. Gut. 2006;55(1):62–67. doi: 10.1136/gut.2005.068189.
    1. Lin KY, Shun SC, Lai YH, Liang JT, Tsauo JY. Comparison of the effects of a supervised exercise program and usual care in patients with colorectal cancer undergoing chemotherapy. Cancer Nurs. 2014;37(2):E21–E29. doi: 10.1097/NCC.0b013e3182791097.
    1. van Zutphen M, Winkels RM, van Duijnhoven FJ, van Harten-Gerritsen SA, Kok DE, van Duijvendijk P, et al. An increase in physical activity after colorectal cancer surgery is associated with improved recovery of physical functioning: a prospective cohort study. BMC Cancer. 2017;17(1):74. doi: 10.1186/s12885-017-3066-2.
    1. Arem H, Pfeiffer RM, Engels EA, Alfano CM, Hollenbeck A, Park Y, et al. Pre- and postdiagnosis physical activity, television viewing, and mortality among patients with colorectal cancer in the National Institutes of Health-AARP diet and health study. J Clin Oncol. 2015;33(2):180–188. doi: 10.1200/JCO.2014.58.1355.
    1. Grimmett C, Simon A, Lawson V, Wardle J. Diet and physical activity intervention in colorectal cancer survivors: a feasibility study. Eur J Oncol Nurs. 2015;19(1):1–6. doi: 10.1016/j.ejon.2014.08.006.
    1. Biswas A, Oh PI, Faulkner GE, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162(2):123–132. doi: 10.7326/M14-1651.
    1. Fassier P, Zelek L, Partula V, Srour B, Bachmann P, Touillaud M, et al. Variations of physical activity and sedentary behavior between before and after cancer diagnosis: results from the prospective population-based NutriNet-Sante cohort. Medicine (Baltimore) 2016;95(40):e4629. doi: 10.1097/MD.0000000000004629.
    1. Hansen BH, Kolle E, Dyrstad SM, Holme I, Anderssen SA. Accelerometer-determined physical activity in adults and older people. Med Sci Sports Exerc. 2012;44(2):266–272. doi: 10.1249/MSS.0b013e31822cb354.
    1. Loyen A, Clarke-Cornwell AM, Anderssen SA, Hagstromer M, Sardinha LB, Sundquist K, et al. Sedentary time and physical activity surveillance through accelerometer pooling in four European countries. Sports Med. 2017;47(7):1421–1435. doi: 10.1007/s40279-016-0658-y.
    1. Rock CL, Doyle C, Demark-Wahnefried W, Meyerhardt J, Courneya KS, Schwartz AL, et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin. 2012;62(4):243–274. doi: 10.3322/caac.21142.
    1. Diet, Nutrition and the Prevention of Chronic Diseases: report of a joint WHO/FAO expert consultation. 2003.
    1. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1435–1445. doi: 10.1249/mss.0b013e3180616aa2.
    1. World Health Organization . Global recommendations on physical activity for health. 2010.
    1. Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvao DA, Pinto BM, et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;42(7):1409–1426. doi: 10.1249/MSS.0b013e3181e0c112.
    1. Cancer Registry of Norway. . Accessed 1 Dec 2015.
    1. Garatachea N, Torres Luque G, Gonzalez Gallego J. Physical activity and energy expenditure measurements using accelerometers in older adults. Nutr Hosp. 2010;25(2):224–230.
    1. Forsen L, Loland NW, Vuillemin A, Chinapaw MJ, van Poppel MN, Mokkink LB, et al. Self-administered physical activity questionnaires for the elderly: a systematic review of measurement properties. Sports Med. 2010;40(7):601–623. doi: 10.2165/11531350-000000000-00000.
    1. van Poppel MN, Chinapaw MJ, Mokkink LB, van Mechelen W, Terwee CB. Physical activity questionnaires for adults: a systematic review of measurement properties. Sports Med. 2010;40(7):565–600. doi: 10.2165/11531930-000000000-00000.
    1. Willett W. Nutritional epidemiology. Oxford: Oxford University Press; 2013.
    1. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–1395. doi: 10.1249/01.MSS.0000078924.61453.FB.
    1. Vassbakk-Brovold K, Kersten C, Fegran L, Mjaland O, Mjaland S, Seiler S, et al. Cancer patients participating in a lifestyle intervention during chemotherapy greatly over-report their physical activity level: a validation study. BMC Sports Sci Med Rehabil. 2016;8:10. doi: 10.1186/s13102-016-0035-z.
    1. Pekmezi DW, Demark-Wahnefried W. Updated evidence in support of diet and exercise interventions in cancer survivors. Acta Oncol. 2011;50(2):167–178. doi: 10.3109/0284186X.2010.529822.
    1. Stull VB, Snyder DC, Demark-Wahnefried W. Lifestyle interventions in cancer survivors: designing programs that meet the needs of this vulnerable and growing population. J Nutr. 2007;137(1 Suppl):243s–248s. doi: 10.1093/jn/137.1.243S.
    1. Bertheussen GF, Oldervoll L, Kaasa S, Sandmæl J-A, Helbostad JL. Measurement of physical activity in cancer survivors—a comparison of the HUNT 1 physical activity questionnaire (HUNT 1 PA-Q) with the international physical activity questionnaire (IPAQ) and aerobic capacity. Support Care Cancer. 2013;21(2):449–458. doi: 10.1007/s00520-012-1530-8.
    1. Henriksen HB, Ræder H, Bohn SK, Paur I, Kværner AS, Billington SÅW, et al. The Norwegian dietary guidelines and colorectal cancer survival (CRC-NORDIET) study: a food-based multicenter randomized controlled trial. BMC Cancer. 2017;17(1):83. doi: 10.1186/s12885-017-3072-4.
    1. Helseundersøkelsen i Nord-Trøndelag (HUNT). . Accessed 1 Dec 2015.
    1. World Cancer Research Fund/ American Institute for Cancer research . Diet, nutrition, physical activity and colorectal cancer, continuous update project report. 2017.
    1. Edge SB. AJCC cancer staging handbook: from the AJCC cancer staging manual. New York: Springer; 2009.
    1. Henriksen HB, Carlsen MH, Paur I, Berntsen S, Bohn SK, Skjetne AJ, et al. Relative validity of a short food frequency questionnaire assessing adherence to the Norwegian dietary guidelines among colorectal cancer patients. Food Nutr Res. 2018;62
    1. Kurtze N, Rangul V, Hustvedt B-E, Flanders WD. Reliability and validity of self-reported physical activity in the Nord-Trøndelag health study (HUNT 2) Eur J Epidemiol. 2007;22(6):379–387. doi: 10.1007/s10654-007-9110-9.
    1. SenseWear Body Media. . Accessed 1 Dec 2017.
    1. Mackey DC, Manini TM, Schoeller DA, Koster A, Glynn NW, Goodpaster BH, et al. Validation of an armband to measure daily energy expenditure in older adults. J Gerontol A Biol Sci Med Sci. 2011;66(10):1108–1113. doi: 10.1093/gerona/glr101.
    1. Cereda E, Turrini M, Ciapanna D, Marbello L, Pietrobelli A, Corradi E. Assessing energy expenditure in cancer patients: a pilot validation of a new wearable device. JPEN J Parenter Enteral Nutr. 2007;31(6):502–507. doi: 10.1177/0148607107031006502.
    1. Berntsen S, Hageberg R, Aandstad A, Mowinckel P, Anderssen SA, Carlsen KH, et al. Validity of physical activity monitors in adults participating in free-living activities. Br J Sports Med. 2010;44(9):657–664. doi: 10.1136/bjsm.2008.048868.
    1. Jette M, Sidney K, Blumchen G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol. 1990;13(8):555–565. doi: 10.1002/clc.4960130809.
    1. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Jr, Tudor-Locke C, et al. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–1581. doi: 10.1249/MSS.0b013e31821ece12.
    1. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(9 Suppl):S498–S504. doi: 10.1097/00005768-200009001-00009.
    1. The Norwegian Directorate of Health . Accessed 24 Apr 2017.
    1. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–310. doi: 10.1016/S0140-6736(86)90837-8.
    1. Schmidt ME, Steindorf K. Statistical methods for the validation of questionnaires--discrepancy between theory and practice. Methods Inf Med. 2006;45(4):409–413. doi: 10.1055/s-0038-1634096.
    1. Bland M. An introduction to medical statistics, 3rd ed. edn. Oxford: Oxford University Press; 2000.
    1. Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5:56. doi: 10.1186/1479-5868-5-56.
    1. Tomioka K, Iwamoto J, Saeki K, Okamoto N. Reliability and validity of the international physical activity questionnaire (IPAQ) in elderly adults: the Fujiwara-kyo study. J Epidemiol. 2011;21(6):459–465. doi: 10.2188/jea.JE20110003.
    1. Thomas S, Bausewein C, Higginson I, Booth S. Breathlessness in cancer patients – implications, management and challenges. Eur J Oncol Nurs. 2011;15(5):459–469. doi: 10.1016/j.ejon.2010.11.013.
    1. Cachia E, Ahmedzai SH. Breathlessness in cancer patients. Eur J Cancer. 2008;44(8):1116–1123. doi: 10.1016/j.ejca.2008.03.004.
    1. Tveter AT, Dagfinrud H, Moseng T, Holm I. Health-related physical fitness measures: reference values and reference equations for use in clinical practice. Arch Phys Med Rehabil. 2014;95(7):1366–1373. doi: 10.1016/j.apmr.2014.02.016.
    1. Warren JM, Ekelund U, Besson H, Mezzani A, Geladas N, Vanhees L. Assessment of physical activity - a review of methodologies with reference to epidemiological research: a report of the exercise physiology section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil. 2010;17(2):127–139. doi: 10.1097/HJR.0b013e32832ed875.
    1. Chau JY, Grunseit A, Midthjell K, Holmen J, Holmen TL, Bauman AE, et al. Sedentary behaviour and risk of mortality from all-causes and cardiometabolic diseases in adults: evidence from the HUNT3 population cohort. Br J Sports Med. 2015;49(11):737–742. doi: 10.1136/bjsports-2012-091974.
    1. Clemes SA, David BM, Zhao Y, Han X, Brown W. Validity of two self-report measures of sitting time. J Phys Act Health. 2012;9(4):533–539. doi: 10.1123/jpah.9.4.533.
    1. Marshall AL, Miller YD, Burton NW, Brown WJ. Measuring total and domain-specific sitting: a study of reliability and validity. Med Sci Sports Exerc. 2010;42(6):1094–1102.
    1. Åsvold BO, Midthjell K, Krokstad S, Rangul V, Bauman A. Prolonged sitting may increase diabetes risk in physically inactive individuals: an 11 year follow-up of the HUNT study. Norway Diabetologia. 2017;60(5):830–835. doi: 10.1007/s00125-016-4193-z.
    1. van Roekel EH, Winkler EA, Bours MJ, Lynch BM, Willems PJ, Meijer K, et al. Associations of sedentary time and patterns of sedentary time accumulation with health-related quality of life in colorectal cancer survivors. Prev Med Rep. 2016;4:262–269. doi: 10.1016/j.pmedr.2016.06.022.
    1. Lee PH, Macfarlane DJ, Lam TH, Stewart SM. Validity of the international physical activity questionnaire short form (IPAQ-SF): a systematic review. Int J Behav Nutr Phys Act. 2011;8:115. doi: 10.1186/1479-5868-8-115.
    1. Ekelund U, Sepp H, Brage S, Becker W, Jakes R, Hennings M, et al. Criterion-related validity of the last 7-day, short form of the international physical activity questionnaire in Swedish adults. Public Health Nutr. 2006;9(2):258–265. doi: 10.1079/PHN2005840.
    1. Courneya KS, Friedenreich CM, Quinney HA, Fields AL, Jones LW, Vallance JK, et al. A longitudinal study of exercise barriers in colorectal cancer survivors participating in a randomized controlled trial. Ann Behav Med. 2005;29(2):147–153. doi: 10.1207/s15324796abm2902_9.
    1. Midtgaard J, Baadsgaard MT, Moller T, Rasmussen B, Quist M, Andersen C, et al. Self-reported physical activity behaviour; exercise motivation and information among Danish adult cancer patients undergoing chemotherapy. Eur J Oncol Nurs. 2009;13(2):116–121. doi: 10.1016/j.ejon.2009.01.006.

Source: PubMed

3
Iratkozz fel