Spinal cord stimulation in Parkinson's disease: a review of the preclinical and clinical data and future prospects

Yi Cai, Rajiv D Reddy, Vishal Varshney, Krishnan V Chakravarthy, Yi Cai, Rajiv D Reddy, Vishal Varshney, Krishnan V Chakravarthy

Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disease with an incidence of 0.1 to 0.2% over the age of 40 and a prevalence of over 1 million people in North America. The most common symptoms include tremor, bradykinesia, rigidity, pain, and postural instability, with significant impact in quality of life and mortality. To date there is ongoing research to determine the optimum therapy for PD. In this review we analyze the current data in the use of spinal cord stimulation (SCS) therapy for treatment for Parkinsonian symptoms. We specifically address waveform pattern, anatomic location and the role of spinal cord stimulation (SCS) as a salvage therapy after deep brain stimulation (DBS) therapy. We also outline current experimental evidence from preclinical research highlighting possible mechanisms of beneficial effects of SCS in this context. Though the use of SCS therapy is in its infancy for treatment of PD, the data points to an exciting area for ongoing research and exploration with positive outcomes from both cervical and thoracic tonic and BURSTDR spinal cord stimulation.

Keywords: Gait; Neuromodulation; Parkinson’s disease; Salvage therapy; Spinal cord stimulation.

Conflict of interest statement

Competing interestsDr. Chakravarthy is a consultant to Abbott, Bioness, Medtronic, Nalu Medical, Saluda Medical. He has stock options in Nalu Medical. He is founder of Newrom Biomedical. There are no other reported conflicts of interest for this body of work from the other authors.

© The Author(s) 2020.

Figures

Fig. 1
Fig. 1
Potential Treatment Paradigm for Parkinson’s Disease using SCS and DBS

References

    1. Agari T, Date I. Spinal cord stimulation for the treatment of abnormal posture and gait disorder in patients with Parkinson’s disease. Neurol Med Chir (Tokyo) 2012;52(7):470–474. doi: 10.2176/nmc.52.470.
    1. Akiyama H, Nukui S, Akamatu M, Hasegawa Y, Nishikido O, Inoue S. Effectiveness of spinal cord stimulation for painful camptocormia with Pisa syndrome in Parkinson’s disease: A case report. BMC Neurol. 2017;17(1). 10.1186/s12883-017-0926-y.
    1. Breen DP, Rohani M, Moro E, et al. Functional movement disorders arising after successful deep brain stimulation. Neurology. 2018;90(20):931–932. doi: 10.1212/WNL.0000000000005530.
    1. Caylor J, Reddy R, Yin S, et al. Spinal cord stimulation in chronic pain: evidence and theory for mechanisms of action. Bioelectron Med. 2019;5(1). 10.1186/s42234-019-0023-1.
    1. Courtine G, Gerasimenko Y, Van Den Brand R, et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci. 2009;12(10):1333–1342. doi: 10.1038/nn.2401.
    1. Davie CA. A review of Parkinson’s disease. Br Med Bull. 2008;86(1):109–127. doi: 10.1093/bmb/ldn013.
    1. Fénelon G, Goujon C, Gurruchaga J-MM, et al. Spinal cord stimulation for chronic pain improved motor function in a patient with Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(2):213–214. doi: 10.1016/j.parkreldis.2011.07.015.
    1. Forsaa EB, Larsen JP, Wentzel-Larsen T, Alves G. What predicts mortality in Parkinson disease?: a prospective population-based long-term study. Neurology. 2010;75(14):1270–1276. doi: 10.1212/WNL.0b013e3181f61311.
    1. Fuentes R, Petersson P, Nicolelis MAL. Restoration of locomotive function in Parkinson’s disease by spinal cord stimulation: mechanistic approach. Eur J Neurosci. 2010;32(7):1100–1108. doi: 10.1111/j.1460-9568.2010.07417.x.
    1. Fuentes R, Petersson P, Siesser WB, Caron MG, Nicolelis MALL. Spinal cord stimulation restores locomotion in animal models of Parkinson’s disease. Science. 2009;323(5921):1578–1582. doi: 10.1126/science.1164901.
    1. Gatev P, Darbin O, Wichmann T. Oscillations in the basal ganglia under normal conditions and in movement disorders. Mov Disord. 2006;21(10):1566–1577. doi: 10.1002/mds.21033.
    1. Ha AD, Jankovic J. Pain in Parkinson’s disease. Mov Disord. 2012;27(4):485–491. doi: 10.1002/mds.23959.
    1. Hassan S, Amer S, Alwaki A, Elborno A. A patient with Parkinson’s disease benefits from spinal cord stimulation. J Clin Neurosci. 2013;20(8):1155–1156. doi: 10.1016/j.jocn.2012.08.018.
    1. Jha A, Litvak V, Taulu S, et al. Functional connectivity of the pedunculopontine nucleus and surrounding region in Parkinson’s disease. Cereb Cortex. 2017;27(1):54–67. doi: 10.1093/cercor/bhw340.
    1. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912. doi: 10.1016/S0140-6736(14)61393-3.
    1. Kobayashi R, Kenji S, Taketomi A, Murakami H, Ono K, Otake H. New mode of burst spinal cord stimulation improved mental status as well as motor function in a patient with Parkinson’s disease. Park Relat Disord. 2018;57:82–83. doi: 10.1016/j.parkreldis.2018.07.002.
    1. Kühn AA, Kupsch A, Schneider GH, Brown P. Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur J Neurosci. 2006;23(7):1956–1960. doi: 10.1111/j.1460-9568.2006.04717.x.
    1. Landi A, Trezza A, Pirillo D, Vimercati A, Antonini A, Pietro SE. Spinal cord stimulation for the treatment of sensory symptoms in advanced Parkinson’s disease. Neuromodulation. 2013;16(3):276–279. doi: 10.1111/ner.12005.
    1. LeWitt PA, Giladi N, Navon N. Pharmacokinetics and efficacy of a novel formulation of carbidopa-levodopa (accordion pill®) in Parkinson’s disease. Park Relat Disord. 2019;65:131–138. doi: 10.1016/j.parkreldis.2019.05.032.
    1. Martinez-Martin P. The importance of non-motor disturbances to quality of life in Parkinson’s disease. J Neurol Sci. 2011;310:12–16. doi: 10.1016/j.jns.2011.05.006.
    1. Mazzone Paolo, Viselli Fabio, Ferraina Stefano, Giamundo Margherita, Marano Massimo, Paoloni Marco, Masedu Francesco, Capozzo Annamaria, Scarnati Eugenio. High Cervical Spinal Cord Stimulation: A One Year Follow-Up Study on Motor and Non-Motor Functions in Parkinson’s Disease. Brain Sciences. 2019;9(4):78. doi: 10.3390/brainsci9040078.
    1. Mills-Joseph Reversa, Krishna Vibhor, Deogaonkar Milind, Rezai Ali R. Neuromodulation. 2018. Deep Brain Stimulation in Parkinson’s Disease; pp. 911–917.
    1. Morgante L, Morgante F, Moro E, et al. How many parkinsonian patients are suitable candidates for deep brain stimulation of subthalamic nucleus? Results of a questionnaire. Park Relat Disord. 2007;13(8):528–531. doi: 10.1016/j.parkreldis.2006.12.013.
    1. Nishioka K, Nakajima M. Beneficial therapeutic effects of spinal cord stimulation in advanced cases of Parkinson’s disease with intractable chronic pain: a case series. Neuromodulation. 2015;18(8):751–753. doi: 10.1111/ner.12315.
    1. Okun MS. Deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2012;367(16):1529–1538. doi: 10.1056/NEJMct1208070.
    1. Okun MS, Rodriguez RL, Foote KD, et al. A case-based review of troubleshooting deep brain stimulator issues in movement and neuropsychiatric disorders. Park Relat Disord. 2008;14(7):532–538. doi: 10.1016/j.parkreldis.2008.01.001.
    1. Okun MS, Tagliati M, Pourfar M, et al. Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol. 2005;62(8):1250–1255. doi: 10.1001/archneur.62.8.noc40425.
    1. Pinto de Souza C, Hamani C, Oliveira Souza C, et al. Spinal cord stimulation improves gait in patients with Parkinson’s disease previously treated with deep brain stimulation. Mov Disord. 2017;32(2):278–282. doi: 10.1002/mds.26850.
    1. Rosin B, Nevet A, Elias S, Rivlin-Etzion M, Israel Z, Bergman H. Physiology and pathophysiology of the basal ganglia-thalamo-cortical networks. Park Relat Disord. 2007;13(SUPPL. 3):437–439. doi: 10.1016/S1353-8020(08)70045-2.
    1. Samotus O, Parrent A, Jog M. Spinal cord stimulation therapy for gait dysfunction in advanced Parkinson’s disease patients. Mov Disord. 2018;33(5):783–792. doi: 10.1002/mds.27299.
    1. Santana MB, Halje P, Simplício H, et al. Spinal cord stimulation alleviates motor deficits in a primate model of parkinson disease. Neuron. 2014;84(4):716–722. doi: 10.1016/j.neuron.2014.08.061.
    1. Shon YM, Lee KH, Goerss SJ, et al. High frequency stimulation of the subthalamic nucleus evokes striatal dopamine release in a large animal model of human DBS neurosurgery. Neurosci Lett. 2010;475(3):136–140. doi: 10.1016/j.neulet.2010.03.060.
    1. Shulman LM, Gruber-Baldini AL, Anderson KE, et al. The evolution of disability in Parkinson disease. Mov Disord. 2008;23(6):790–796. doi: 10.1002/mds.21879.
    1. Silberstein P, Pogosyan A, Kühn AA, et al. Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain. 2005;128(6):1277–1291. doi: 10.1093/brain/awh480.
    1. Stefani A, Lozano AM, Peppe A, et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain. 2007;130(6):1596–1607. doi: 10.1093/brain/awl346.
    1. Thevathasan W, Mazzone P, Jha A, et al. Spinal cord stimulation failed to relieve akinesia or restore locomotion in parkinson disease. Neurology. 2010;74(16):1325–1327. doi: 10.1212/WNL.0b013e3181d9ed58.
    1. Wichmann T, Bergman H, DeLong MR. The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol. 1994;72(2):521–530. doi: 10.1152/jn.1994.72.2.521.

Source: PubMed

3
Iratkozz fel