Omega-3 Fatty Acid Supplementation for 12 Weeks Increases Resting and Exercise Metabolic Rate in Healthy Community-Dwelling Older Females

Samantha L Logan, Lawrence L Spriet, Samantha L Logan, Lawrence L Spriet

Abstract

Critical among the changes that occur with aging are decreases in muscle mass and metabolic rate and an increase in fat mass. These changes may predispose older adults to chronic disease and functional impairment; ultimately resulting in a decrease in the quality of life. Research has suggested that long chain omega-3 fatty acids, found predominantly in fatty fish, may assist in reducing these changes. The objective of this study was to evaluate the effect of fish oil (FO) supplementation in a cohort of healthy, community-dwelling older females on 1) metabolic rate and substrate oxidation at rest and during exercise; 2) resting blood pressure and resting and exercise heart rates; 3) body composition; 4) strength and physical function, and; 5) blood measures of insulin, glucose, c-reactive protein, and triglycerides. Twenty-four females (66 ± 1 yr) were recruited and randomly assigned to receive either 3g/d of EPA and DHA or a placebo (PL, olive oil) for 12 wk. Exercise measurements were taken before and after 12 wk of supplementation and resting metabolic measures were made before and at 6 and 12 wk of supplementation. The results demonstrated that FO supplementation significantly increased resting metabolic rate by 14%, energy expenditure during exercise by 10%, and the rate of fat oxidation during rest by 19% and during exercise by 27%. In addition, FO consumption lowered triglyceride levels by 29% and increased lean mass by 4% and functional capacity by 7%, while no changes occurred in the PL group. In conclusion, FO may be a strategy to improve age-related physical and metabolic changes in healthy older females. Trial registration: ClinicalTrials.gov NCT01734538.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Consort figure illustrating the participant…
Fig 1. Consort figure illustrating the participant flow through the study.
Fig 2. Oxygen uptake measures at rest…
Fig 2. Oxygen uptake measures at rest and during exercise at baseline (time 1 (T1); 0 wk), and after 6 (T2) and 12 wk (T3) of placebo (olive oil) or fish oil supplementation.
Significant difference within groups *at 0 and 6 wk (p = 0.003), **at 0 and 12 wk (Resting p = 0.003; Exercise p = 0.002), and between groups ++ at 12 wk (p = 0.004).
Fig 3. Metabolic measures of energy expenditure…
Fig 3. Metabolic measures of energy expenditure at rest and during exercise at baseline (time 1 (T1); 0 wk), and after 6 (T2) and 12 wk (T3) of placebo (olive oil) or fish oil supplementation.
Significant difference within groups *at 0 and 6 wk (p = 0.003), **at 0 and 12 wk (Resting p = 0.003; Exercise p = 0.006), and between groups at ++12 wk (Resting p = 0.003; Exercise p = 0.004).
Fig 4. Fat oxidation at rest and…
Fig 4. Fat oxidation at rest and during exercise at baseline (time 1 (T1); 0 wk), and after 6 (T2) and 12 wk (T3) of placebo (olive oil) or fish oil supplementation.
Significant difference within groups at ** 0 and 12 wk (Resting p = 0.003; Exercise p = 0.002), and between groups at ++12 wk (p = 0.004).

References

    1. Statistics Canada. A portrait of seniors in Canada. 2014. Available: .
    1. Evans WJ, Campbell WW. Sarcopenia and age-related changes in body composition and functional capacity. J Nutr. 1993;123(Suppl 2): 465–468.
    1. Lakatta EG, Mitchell JH, Pomerance A, Rowe GG. Human aging: changes in structure and function. Am Coll Cardiol. 1987;10(Suppl 2): 42A–47A.
    1. Drewnowski A, Evans WJ. Nutrition, physical activity, and quality of life in older adults: summary. J Gerontol. 2001;56(A): 89–94.
    1. Williams K, Kemper S. Exploring interventions to reduce cognitive decline in aging. J Psychcosoc Nurs Ment Health Serv. 2010;48(5): 42–51.
    1. Muskiet FAJ, Fokkema MR, Schaafsma A, Boersma ER, Crawford MA. Is docosahexaenoic acid (DHA) essential? Lessons from DHA status regulation, our ancient diet, epidemiology and randomized controlled trials. J Nutr. 2004;134(1): 183–186.
    1. Health Canada. Consumption advice: making informed choices about fish. 2014. Available: .
    1. Krauss RM, Eckel RH, Howard B, Appel LJ, Daniels SR, Deckelbaum RJ. Human aging: changes in structure and function. Am Coll Cardiol. 1987;10(Suppl 2): 42A–47A.
    1. Harris WS, Mozaffarian D, Lefevre M, Toner CD, Colombo J, Cunnane SC, et al. Towards dietary reference intakes for EPA and DHA towards establishing dietary reference intakes for eicosapentaenoic and docosahexaenoic Acids. J Nutr. 2009;139(4): 804S–819S. 10.3945/jn.108.101329
    1. Logan SL, McIntosh EI, Vallis LA, Spriet LL. Nutrient and dietary supplement intake and measures of lean mass, fat free mass index and strength in community-dwelling adults 70 years and older with high socioeconomic status. J Hum Nutr Food Sci. 2013;1(1): 1–11.
    1. Balk EM, Lichtenstein AH, Chung M, Kupelnick B, Chew P, Lau J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis. 2006;189(1): 19–30.
    1. De Rosa LM. Can purified omega-3 polyunsaturated fatty acids supplementation act blood pressure levels in untreated normal-high blood pressure subjects with hypertriglyceridemia? J Pharm Pharmacol. 2012;3(2): 234–239.
    1. Geleijnse JM, Giltay EJ, Grobbee DE, Donders AR, Kok FJ. Blood pressure response to fish oil supplementation: meta regression analysis of randomized trials. J Hypertension. 2002;20(8): 1493–1499.
    1. Visser M. Epidemiology of Muscle Mass Loss with Age In: Cruz-Jentoft AJ, Morley JE, editors. Sarcopenia. New Jersey: John Wiley and Sons Ltd; 2012. pp. 1–2.
    1. Eritsland J, Arnesen H, Grønseth K, Fjeld NB, Abdelnoor M. Effect of dietary supplementation with n-3 fatty acids on coronary artery bypass graft patency. Am J Cardiol. 1996;77(1): 31–36.
    1. Campbell WW, Trappe TA, Wolfe RR. The recommended dietary allowance for protein may not be adequate for older people to maintain skeletal muscle. J Gerontol A Biol Sci Med Sci. 2001;56(6): M373–380.
    1. Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest. 1990;86(5): 1423–1427.
    1. Couet C, Delarue P, Autoine JM, Lamisse F. Effect of dietary fish oil on body mass and basal fat oxidation in healthy adults. Int J Obes Relat Metab Disord. 1997;21(8): 637–643.
    1. Noreen EE, Sass MJ, Crowe ML, Pabon VA, Brandauer J. Effects of supplemental fish oil on resting metabolic rate, body composition, and salivary cortisol in healthy adults. J Int Soc Sports Nutr. 2010;7(31): 3–7.
    1. Gerling CJ, Whitfield J, Mukai K, Spriet LL. Variable effects of 12 weeks of omega-3 supplementation on resting skeletal muscle metabolism. Appl Physiol Nutr Metab. 2014;39(9): 1083–1091. 10.1139/apnm-2014-0049
    1. Herbst EA, Paglialunga S, Gerling C, Whitfield J, Mukai K, Heigenhauser GJ, et al. Omega-3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle. J Physiol. 2014. 15;592(6): 1341–1352.
    1. Seo T, Blaner WS, Deckelbaum RJ. Omega-3 fatty acids: molecular approaches to optimal biological outcomes. Curr Opin Lipidol. 2005;16(1): 11–18.
    1. Kota BP, Huang THW, Roufogalis BD. An overview on biological mechanisms of PPARs. Pharmacol Res. 2005;51(2): 85–94.
    1. Smith GI, Julliand S, Reeds DN, Sinacore DR, Klein S, Mittendorfer B. Fish oil—derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am J Clin Nutr. 2015;102(1): 115–122. 10.3945/ajcn.114.105833
    1. Folstein MF, Folstein SE, McHugh PR. Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3): 189–198.
    1. Karvonen JJ, Kentala E, Mustala O. The effects of training on heart rate: a "longitudinal" study. Ann Med Exp Biol Fenn. 1957;35(3): 307–315.
    1. Borg G. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1992;14(5): 377–381.
    1. Washburn RA, McAuley E, Katula J, Janney CA. The physical activity scale for the elderly (PASE): development and evaluation. J Clin Epidemiol. 1993;46(2): 153–162.
    1. Canadian Society for Exercise Physiology (CSEP). Canadian Physical Activity, Fitness & Lifestyle Approach: The Canadian Physical Activity, Fitness & Lifestyle Approach. 3rd ed Ottawa: Canadian Society for Exercise Physiology; 2003.
    1. Schutz Y, Kyle UU, Prichard C. Fat free mass index and fat mass index percentiles in Caucasians aged 18–98 years. Int J Obes Relat Metab Disord. 2002;26(7): 953–960.
    1. Berg KO, Wood-Dauphinee SL, Williams JI, Maki B. Measuring balance in the elderly: validation of an instrument. Can J Public Health. 1992;83(Suppl 2): 7–11.
    1. Podsiadlo D, Richardson S. The timed “up & go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2): 142–148.
    1. Leonard WR. Measuring human energy expenditure and metabolic function: basic principles and methods. J Anthropol Sci. 2010;88: 221–230.
    1. Health Canada. Food and nutrition: estimated energy requirements. 2014. Available: .
    1. Health Canada. Dietary reference values for macronutrients. 2014. Available: .
    1. Huffman DM, Michaelson JL, Thomas TR. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. J Exerc Physiol. 2004;7(1): 48–56.
    1. Poprzecki S, Zajac A, Chalimoniuk M, Waskiewicz Z, Langfort J. Modification of blood antioxidant status and lipid profile in response to high-intensity endurance exercise after low doses of omega-3 polyunsaturated fatty acids supplementation in healthy volunteers. Int J Food Sci Nutr. 2009;60(Suppl 2): 67–79. 10.1080/09637480802406161
    1. Elia M. Energy Metabolism: Tissue Determinants and Cellular Corollaries In: Kinney JM, Tucker HN, editors. Organ and tissue contribution to metabolic weight. New York: Raven Press Ltd; 1999. pp. 61–79.
    1. Lin Q, Ruuska SE, Shaw NS, Dong D, Noy N. Ligand selectivity of the peroxisome proliferator-activated receptor alpha. Biochemistry. 1999;38(1):185–190.
    1. Abe Y, El-Masri B, Kimball KT, Pownall H, Reilly CF, Osmundsen K, et al. Soluble cell adhesion molecules in hypertriglyceridemia and potential significance on monocyte adhesion. Arterioscler Thromb Vasc Biol. 1998;18(5): 723–731.
    1. Clavel S, Farout L, Briand M, Briand Y, Jouanel P. Effect of endurance training and/or fish oil supplemented diet on cytoplasmic fatty acid binding protein in rat skeletal muscles and heart. Eur J Appl Physiol. 2002;87(3): 193–201.
    1. Baillie RA, Takada R, Nakamura M, Clarke SD. Coordinate induction of peroxisomal acyl-CoA oxidase and UCP-3 by dietary fish oil: a mechanism for decreased body fat deposition. Prostaglandins Leukot Essent Fatty Acids. 1999;60(5–6): 351–356.
    1. Bezaire V, Spriet LL, Campbell S, Sabet N, Gerrits M, Bonen A, et al. Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation. FASEB J. 2005;19(8): 977–979.
    1. Power GW, Newsholme EA. Dietary fatty acids influence the activity and metabolic control of mitochondrial carnitine palmitoyltransferase I in rat heart and skeletal muscle. J Nutr. 1997;127(11): 2142–5210.
    1. Olesen J, Kiilerich K, Pilegaard H. PGC-1alpha-mediated adaptations in skeletal muscle. Pflügers Arch. 2010;460(1): 153–162. 10.1007/s00424-010-0834-0
    1. Wu Z, Puigserver P, Andersson U, Adelmant G, Mootha V, Troy A, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1): 115–124.
    1. Hulbert AJ, Turner N, Storlien LH, Else PL. Dietary fats and membrane function: Implications for metabolism and disease. Biol Rev Camb Philos Soc. 2005;80(1): 155–169.
    1. Hulbert AJ. Membrane fatty acids as pacemakers of animal metabolism. Lipids. 2007;42(9): 811–819.
    1. Buckley JD, Howe PRC. Long-chain omega-3 polyunsaturated fatty acids may be beneficial for reducing obesity—a review. Nutrients. 2010;2(12): 2012–2030.
    1. Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, et al. Dietary omega-3 supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am J Clin Nutr. 2011;93(2): 402–412. 10.3945/ajcn.110.005611
    1. Hutchins-Wiese HL, Kleppinger A, Annis K, Liva E, Lammi-Keefe CJ, Durham HA. The impact of supplemental n-3 long chain polyunsaturated fatty acids and dietary antioxidants on physical performance in postmenopausal women. J Nutr Health Aging. 2013;17(1): 76–80. 10.1007/s12603-012-0415-3
    1. Rodacki CLN, Rodracki ALF, Pereira G, Naliwaiko K, Coelho I, Pequito D, et al. Fish-oil supplementation enhances the effects of strength training in elderly women. Am J Clin Nutr. 2012;95(2): 428–436. 10.3945/ajcn.111.021915
    1. Patten GS, Abeywardena MY, McMurchie EJ, Jahangiri A. Dietary fish oil increases acetylcholine- and eicosanoid-induced contractility of isolated rat ileum. J Nutr. 2002;132(9): 2506–2513.
    1. Farooqui AA, Horrocks LA. Phospholipase A2-generated lipid In: Farooqui AA, Horrocks LA, editors. Phospholipases A2 in Neurological Disorders. New York: Springer; 2006. pp. 115–124.
    1. Gladman SJ, Huang W, Lim SN, Dyall SC, Boddy S, Knight MM, et al. Improved outcome after peripheral nerve injury in mice with increased levels of endogenous ω-3 polyunsaturated fatty acids. J Neurosci. 2012;32(2): 563–571. 10.1523/JNEUROSCI.3371-11.2012
    1. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol. 2000;89(1): 81–88.
    1. Harris WE, Miller M, Tingh AP, Davidson MH, Schaefer EJ. Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis. 2008;197(1): 12–24.
    1. Mozaffarian D, Geelen A, Brouwer IA, Geleijnse JM, Zock PL, Katan MB. Effect of fish oil on heart rate in humans a meta-analysis of randomized controlled trials. Circulation. 2005;112(13): 1945–1952.
    1. Deslypere JP. Influence of supplementation with n-3 fatty acids on different coronary risk factors in men: a placebo controlled study. Verh K Acad Geneeskd Belg. 1992;54(3): 189–216.
    1. Bryan S, Larose MSP, Campbell N. Resting blood pressure and heart rate measurements in the Canadian health measures survey, cycle 1. Health Rep. 2010;21(1): 71–78.
    1. Leaf A, Kang JX, Xiao YF. The antiarrhythmic and anticonvulsant effects of dietary n-3 fatty acids. J Membr Biol. 1999;172(1): 1–11.
    1. Pepe S, McLennan PL. A maintained afterload model of ischemia in erythrocyte-perfused isolated working hearts. J Pharmacol Toxicol Methods. 1993;29(4): 203–210.
    1. Shields M, Tremblay MS, Laviolette M, Craig CL, Janssen I. Fitness of Canadian adults: results from the 2007–2008 Canadian health measures survey. Health Rep. 2010;21(1): 21–35.

Source: PubMed

3
Iratkozz fel