Short-term safety, tolerability and efficacy of a very low-calorie-ketogenic diet interventional weight loss program versus hypocaloric diet in patients with type 2 diabetes mellitus

A Goday, D Bellido, I Sajoux, A B Crujeiras, B Burguera, P P García-Luna, A Oleaga, B Moreno, F F Casanueva, A Goday, D Bellido, I Sajoux, A B Crujeiras, B Burguera, P P García-Luna, A Oleaga, B Moreno, F F Casanueva

Abstract

Brackground:The safety and tolerability of very low-calorie-ketogenic (VLCK) diets are a current concern in the treatment of obese type 2 diabetes mellitus (T2DM) patients.

Objective: Evaluating the short-term safety and tolerability of a VLCK diet (<50 g of carbohydrate daily) in an interventional weight loss program including lifestyle and behavioral modification support (Diaprokal Method) in subjects with T2DM.

Methods: Eighty-nine men and women, aged between 30 and 65 years, with T2DM and body mass index between 30 and 35 kg m(-)(2) participated in this prospective, open-label, multi-centric randomized clinical trial with a duration of 4 months. Forty-five subjects were randomly assigned to the interventional weight loss (VLCK diet), and 44 to the standard low-calorie diet.

Results: No significant differences in the laboratory safety parameters were found between the two study groups. Changes in the urine albumin-to-creatinine ratio in VLCK diet were not significant and were comparable to control group. Creatinine and blood urea nitrogen did not change significantly relative to baseline nor between groups. Weight loss and reduction in waist circumference in the VLCK diet group were significantly larger than in control subjects (both P<0.001). The decline in HbA1c and glycemic control was larger in the VLCK diet group (P<0.05). No serious adverse events were reported and mild AE in the VLCK diet group declined at last follow-up.

Conclusions: The interventional weight loss program based on a VLCK diet is most effective in reducing body weight and improvement of glycemic control than a standard hypocaloric diet with safety and good tolerance for T2DM patients.

Conflict of interest statement

AG, DB, BM, ABC and FFC received advisory board fees and or research grants from Pronokal Protein Supplies Spain.

Figures

Figure 1
Figure 1
Diet-induced changes in safety parameters in the very low-calorie-ketogenic (VLCK) diet and low-calorie (LC) diet groups. (a) Changes in capillary ketones. (b) Changes in albuminuria. (c) Changes in estimated Glomerular Filtration Rate using MDRD study equation (MDRD-eGFR). (d) Changes in ALAT. *P-value<0.05: all cases, between-group comparisons conducted by ANOVA.

References

    1. Association AD. Executive summary: standards of medical care in diabetes–2013. Diabetes Care 2013; 36(Suppl 1): S4–s10.
    1. Lai M, Chandrasekera PC, Barnard ND. You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutr Diabetes 2014; 4: e135.
    1. Lopez-Legarrea P, de la Iglesia R, Crujeiras AB, Pardo M, Casanueva FF, Zulet MA et al. Higher baseline irisin concentrations are associated with greater reductions in glycemia and insulinemia after weight loss in obese subjects. Nutr Diabetes 2014; 4: e110.
    1. Wing RR, Lang W, Wadden TA, Safford M, Knowler WC, Bertoni AG et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care 2011; 34: 1481–1486.
    1. Norris SL, Zhang X, Avenell A, Gregg E, Brown TJ, Schmid CH et al. Long-term non-pharmacologic weight loss interventions for adults with type 2 diabetes. Cochrane Database Syst Rev 2005. CD004095.
    1. Snel M, Gastaldelli A, Ouwens DM, Hesselink MK, Schaart G, Buzzigoli E et al. Effects of adding exercise to a 16-week very low-calorie diet in obese, insulin-dependent type 2 diabetes mellitus patients. J Clin Endocrinol Metab 2012; 97: 2512–2520.
    1. Snel M, Sleddering MA, Vd Peijl ID, Romijn JA, Pijl H, Meinders AE et al. Quality of life in type 2 diabetes mellitus after a very low calorie diet and exercise. Eur J Intern Med 2012; 23: 143–149.
    1. Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 2005; 54: 603–608.
    1. Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 2011; 54: 2506–2514.
    1. Leonetti F, Campanile FC, Coccia F, Capoccia D, Alessandroni L, Puzziello A et al. Very low-carbohydrate ketogenic diet before bariatric surgery: prospective evaluation of a sequential diet. Obes Surg 2012; 25: 64–71.
    1. Malandrucco I, Pasqualetti P, Giordani I, Manfellotto D, De Marco F, Alegiani F et al. Very-low-calorie diet: a quick therapeutic tool to improve beta cell function in morbidly obese patients with type 2 diabetes. Am J Clin Nutr 2012; 95: 609–613.
    1. Bantle JP, Wylie-Rosett J, Albright AL, Apovian CM, Clark NG, Franz MJ et al. Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care 2008; 31(Suppl 1): S61–S78.
    1. Wheeler ML, Dunbar SA, Jaacks LM, Karmally W, Mayer-Davis EJ, Wylie-Rosett J et al. Macronutrients, food groups, and eating patterns in the management of diabetes: a systematic review of the literature, 2010. Diabetes Care 2012; 35: 434–445.
    1. Evert AB, Boucher JL, Cypress M, Dunbar SA, Franz MJ, Mayer-Davis EJ et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 2013; 36: 3821–3842.
    1. Layman DK, Evans E, Baum JI, Seyler J, Erickson DJ, Boileau RA. Dietary protein and exercise have additive effects on body composition during weight loss in adult women. J Nutr 2005; 135: 1903–1910.
    1. Claessens M, van Baak MA, Monsheimer S, Saris WH. The effect of a low-fat, high-protein or high-carbohydrate ad libitum diet on weight loss maintenance and metabolic risk factors. Int J Obes (Lond) 2009; 33: 296–304.
    1. Layman DK, Clifton P, Gannon MC, Krauss RM, Nuttall FQ. Protein in optimal health: heart disease and type 2 diabetes. Am J Clin Nutr 2008; 87: 1571S–1575S.
    1. Evangelista LS, Heber D, Li Z, Bowerman S, Hamilton MA, Fonarow GC. Reduced body weight and adiposity with a high-protein diet improves functional status, lipid profiles, glycemic control, and quality of life in patients with heart failure: a feasibility study. J Cardiovasc Nurs 2009; 24: 207–215.
    1. Okuda T, Morita N. A very low carbohydrate ketogenic diet prevents the progression of hepatic steatosis caused by hyperglycemia in a juvenile obese mouse model. Nutr Diabetes 2012; 2: e50.
    1. Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med 1996; 124: 627–632.
    1. Krebs JD, Elley CR, Parry-Strong A, Lunt H, Drury PL, Bell DA et al. The Diabetes Excess Weight Loss (DEWL) Trial: a randomised controlled trial of high-protein versus high-carbohydrate diets over 2 years in type 2 diabetes. Diabetologia 2012; 55: 905–914.
    1. Moreno B, Bellido D, Sajoux I, Goday A, Saavedra D, Crujeiras AB et al. Comparison of a very low-calorie-ketogenic diet with a standard low-calorie diet in the treatment of obesity. Endocrine 2014; 47: 793–805.
    1. Goday A, Gabriel R, Ascaso JF, Franch J, Ortega R, Martinez O et al. [Cardiovascular risk in subjects with high probability of metabolic syndrome and insulin resistance. DESIRE study]. Rev Clin Esp 2008; 208: 377–385.
    1. Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH, Anton SD et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 2009; 360: 859–873.
    1. Robertson L, Waugh N, Robertson A. Protein restriction for diabetic renal disease. Cochrane Database Syst Rev 2007; CD002181.
    1. Tirosh A, Golan R, Harman-Boehm I, Henkin Y, Schwarzfuchs D, Rudich A et al. Renal function following three distinct weight loss dietary strategies during 2 years of a randomized controlled trial. Diabetes Care 2013; 36: 2225–2232.
    1. Westerterp-Plantenga MS, Lemmens SG, Westerterp KR. Dietary protein - its role in satiety, energetics, weight loss and health. Br J Nutr 2012; 108(Suppl 2): S105–S112.
    1. Wycherley TP, Noakes M, Clifton PM, Cleanthous X, Keogh JB, Brinkworth GD. A high-protein diet with resistance exercise training improves weight loss and body composition in overweight and obese patients with type 2 diabetes. Diabetes Care 2010; 33: 969–976.
    1. Brinkworth GD, Noakes M, Parker B, Foster P, Clifton PM. Long-term effects of advice to consume a high-protein, low-fat diet, rather than a conventional weight-loss diet, in obese adults with type 2 diabetes: one-year follow-up of a randomised trial. Diabetologia 2004; 47: 1677–1686.
    1. Ajala O, English P, Pinkney J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am J Clin Nutr 2013; 97: 505–516.
    1. Westman EC, Yancy Jr WS, Mavropoulos JC, Marquart M, McDuffie JR. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr Metab (Lond) 2008; 5: 36.
    1. Sheikh-Ali M, Karon BS, Basu A, Kudva YC, Muller LA, Xu J et al. Can serum beta-hydroxybutyrate be used to diagnose diabetic ketoacidosis? Diabetes Care 2008; 31: 643–647.
    1. Wadden TA, West DS, Neiberg RH, Wing RR, Ryan DH, Johnson KC et al. One-year weight losses in the Look AHEAD study: factors associated with success. Obesity (Silver Spring) 2009; 17: 713–722.
    1. Soenen S, Martens EA, Hochstenbach-Waelen A, Lemmens SG, Westerterp-Plantenga MS. Normal protein intake is required for body weight loss and weight maintenance, and elevated protein intake for additional preservation of resting energy expenditure and fat free mass. J Nutr 2013; 143: 591–596.
    1. Paoli A, Rubini A, Volek JS, Grimaldi KA. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr 2013; 67: 789–796.
    1. Noakes M, Keogh JB, Foster PR, Clifton PM. Effect of an energy-restricted, high-protein, low-fat diet relative to a conventional high-carbohydrate, low-fat diet on weight loss, body composition, nutritional status, and markers of cardiovascular health in obese women. Am J Clin Nutr 2005; 81: 1298–1306.
    1. Hemmingsson E, Johansson K, Eriksson J, Sundstrom J, Neovius M, Marcus C. Weight loss and dropout during a commercial weight-loss program including a very-low-calorie diet, a low-calorie diet, or restricted normal food: observational cohort study. Am J Clin Nutr 2012; 96: 953..

Source: PubMed

3
Iratkozz fel