Predictors of Carotid Intima-Media Thickness Progression in Adolescents-The EVA-Tyrol Study

Sophia J Kiechl, Anna Staudt, Katharina Stock, Nina Gande, Benoît Bernar, Christoph Hochmayr, Bernhard Winder, Ralf Geiger, Andrea Griesmacher, Markus Anliker, Stefan Kiechl, Ursula Kiechl-Kohlendorfer, Michael Knoflach, Raimund Pechlaner, Early Vascular Ageing (EVA) Study Group *, Mandy Asare, Manuela Bock-Bartl, Maximilian Bohl, Julia Klingenschmid, Martina Kothmayer, Julia Marxer, Maximilian Pircher, Carmen Reiter, Christina Schreiner, Sophia J Kiechl, Anna Staudt, Katharina Stock, Nina Gande, Benoît Bernar, Christoph Hochmayr, Bernhard Winder, Ralf Geiger, Andrea Griesmacher, Markus Anliker, Stefan Kiechl, Ursula Kiechl-Kohlendorfer, Michael Knoflach, Raimund Pechlaner, Early Vascular Ageing (EVA) Study Group *, Mandy Asare, Manuela Bock-Bartl, Maximilian Bohl, Julia Klingenschmid, Martina Kothmayer, Julia Marxer, Maximilian Pircher, Carmen Reiter, Christina Schreiner

Abstract

Background Cardiovascular disease depends on the duration and time course of risk factor exposure. Previous reports on risk factors of progression of carotid intima-media thickness (cIMT) in the young were mostly restricted to high-risk populations or susceptible to certain types of bias. We aimed to unravel a risk factor signature for early vessel pathology based on repeated ultrasound assessments of the carotid arteries in the general population. Methods and Results Risk factors were assessed in 956 adolescents sampled from the general population with a mean age of 15.8±0.9 years, 56.2% of whom were female. cIMT was measured at baseline and on average 22.5±3.4 months later by high-resolution ultrasound. Effects of baseline risk factors on cIMT progression were investigated using linear mixed models with multivariable adjustment for potential confounders, which yielded significant associations (given as increase in cIMT for a 1-SD higher baseline level) for alanine transaminase (5.5 μm; 95% CI: 1.5-9.5), systolic blood pressure (4.7 μm; 0.3-9.2), arterial hypertension (9.5 μm, 0.2-18.7), and non-high-density (4.5 μm; 0.7-8.4) and low-density lipoprotein cholesterol (4.3 μm; 0.5-8.1). Conclusions Systolic blood pressure, arterial hypertension, low-density and non-high-density lipoprotein cholesterol, and alanine transaminase predicted cIMT progression in adolescents, even though risk factor levels were predominantly within established reference ranges. These findings reemphasize the necessity to initiate prevention early in life and challenge the current focus of guideline recommendations on high-risk youngsters. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03929692.

Keywords: atherosclerosis; cardiovascular disease; intima‐media thickness; risk factors.

Conflict of interest statement

None.

Figures

Figure 1. Predictors of carotid intima‐media thickness…
Figure 1. Predictors of carotid intima‐media thickness progression in adolescents.
Predictors are shown on the y‐axis and change in cIMT after 22.5 months of follow‐up on the x‐axis as points (main estimate) and horizontal ranges (95% CI). Effects are given for a 1‐SD higher level for continuous variables and vs the reference category for categorical variables. Model 1: adjustment for baseline cIMT, age, and sex; Model 2: adjustment for baseline cIMT, age, sex, and for the following variables both at baseline and at follow‐up: systolic and diastolic blood pressure, BMI Z score, LDL‐cholesterol, fasting glucose, smoking status (never vs ever smoker) and Family Affluence Scale score (except for highly correlated variables, see Methods section for details), and alcohol consumption in grams/week (only for liver parameters). Only predictors but not the adjustment variables of Model 1 and Model 2 are shown on the y‐axis. Under multivariable adjustment (Model 2), systolic blood pressure, arterial hypertension, LDL cholesterol, non‐HDL cholesterol, and alanine transaminase were significantly associated with cIMT progression. Central obesity was defined as a waist circumference at or above the 90th age‐ and sex‐specific percentile. Arterial hypertension was defined as a systolic blood pressure ≥130 mm Hg, a diastolic blood pressure ≥80 mm Hg, or any of the 2 at or above the age‐ and sex‐specific 95th percentile. Elevated ALT was defined as an ALT ≥22 U/L in girls and ≥26 U/L in boys. *Never‐smokers were excluded for this analysis. ALT indicates alanine transaminase; BMI, body mass index; cIMT, carotid intima‐media thickness; HDL, high‐density lipoprotein; HOMA‐IR, Homeostatic Model Assessment for Insulin Resistance; and LDL, low‐density lipoprotein. †Categorical variable.

References

    1. Berenson GS, Srinivasan SR, Bao W, Newman WP III, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med. 1998;338:1650–1656. DOI: 10.1056/NEJM199806043382302.
    1. Domanski MJ, Tian X, Wu CO, Reis JP, Dey AK, Gu Y, Zhao L, Bae S, Liu K, Hasan AA, et al. Time course of LDL cholesterol exposure and cardiovascular disease event risk. J Am Coll Cardiol. 2020;76:1507–1516. DOI: 10.1016/j.jacc.2020.07.059.
    1. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents, National Heart, Lung, and Blood Institute . Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(suppl 5):S213–S256.
    1. Braamskamp MJAM, Langslet G, McCrindle BW, Cassiman D, Francis GA, Gagne C, Gaudet D, Morrison KM, Wiegman A, Turner T, et al. Effect of rosuvastatin on carotid intima‐media thickness in children with heterozygous familial hypercholesterolemia: the CHARON Study (Hypercholesterolemia in Children and Adolescents Taking Rosuvastatin Open Label). Circulation. 2017;136:359–366. DOI: 10.1161/CIRCULATIONAHA.116.025158.
    1. Dalla Pozza R, Beyerlein A, Thilmany C, Weissenbacher C, Netz H, Schmidt H, Bechtold S. The effect of cardiovascular risk factors on the longitudinal evolution of the carotid intima medial thickness in children with type 1 diabetes mellitus. Cardiovasc Diabetol. 2011;10:53. DOI: 10.1186/1475-2840-10-53.
    1. Dawson JD, Sonka M, Blecha MB, Lin W, Davis PH. Risk factors associated with aortic and carotid intima‐media thickness in adolescents and young adults: the Muscatine Offspring Study. J Am Coll Cardiol. 2009;53:2273–2279. DOI: 10.1016/j.jacc.2009.03.026.
    1. Chiesa ST, Charakida M, Georgiopoulos G, Dangardt F, Wade KH, Rapala A, Bhowruth DJ, Nguyen HC, Muthurangu V, Shroff R, et al. Determinants of intima‐media thickness in the young: the ALSPAC Study. JACC Cardiovasc Imaging. 2021;14:468–478.
    1. Raitakari OT, Juonala M, Kähönen M, Taittonen L, Laitinen T, Mäki‐Torkko N, Järvisalo MJ, Uhari M, Jokinen E, Rönnemaa T, et al. Cardiovascular risk factors in childhood and carotid artery intima‐media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. JAMA. 2003;290:2277–2283. DOI: 10.1001/jama.290.17.2277.
    1. Willeit P, Tschiderer L, Allara E, Reuber K, Seekircher L, Gao LU, Liao X, Lonn E, Gerstein HC, Yusuf S, et al. Carotid Intima‐media thickness progression as surrogate marker for cardiovascular risk: meta‐analysis of 119 clinical trials involving 100,667 patients. Circulation. 2020;142:621–642. DOI: 10.1161/CIRCULATIONAHA.120.046361.
    1. Bernar B, Gande N, Stock KA, Staudt A, Pechlaner R, Geiger R, Griesmacher A, Kiechl S, Knoflach M, Kiechl‐Kohlendorfer U, et al. The Tyrolean early vascular ageing‐study (EVA‐Tyrol): study protocol for a non‐randomized controlled trial: effect of a cardiovascular health promotion program in youth, a prospective cohort study. BMC Cardiovasc Disord. 2020;20:59. DOI: 10.1186/s12872-020-01357-9.
    1. Vos MB, Abrams SH, Barlow SE, Caprio S, Daniels SR, Kohli R, Mouzaki M, Sathya P, Schwimmer JB, Sundaram SS, et al. NASPGHAN clinical practice guideline for the diagnosis and treatment of nonalcoholic fatty liver disease in children: recommendations from the Expert Committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN). J Pediatr Gastroenterol Nutr. 2017;64:319–334. DOI: 10.1097/MPG.0000000000001482.
    1. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, de Ferranti S, Faiella‐Tommasino J, Forman DE, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e1082–e1143.
    1. Knoflach M, Kiechl S, Kind M, Said M, Sief R, Gisinger M, van der Zee R, Gaston H, Jarosch E, Willeit J, et al. Cardiovascular risk factors and atherosclerosis in young males: ARMY study (Atherosclerosis Risk‐Factors in Male Youngsters). Circulation. 2003;108:1064–1069. DOI: 10.1161/01.CIR.0000085996.95532.FF.
    1. Knoflach M, Kiechl S, Penz D, Zangerle A, Schmidauer C, Rossmann A, Shingh M, Spallek R, Griesmacher A, Bernhard D, et al. Cardiovascular risk factors and atherosclerosis in young women: atherosclerosis risk factors in female youngsters (ARFY study). Stroke. 2009;40:1063–1069. DOI: 10.1161/STROKEAHA.108.525675.
    1. Kiechl S, Willeit J. The natural course of atherosclerosis. Part I: incidence and progression. Arterioscler Thromb Vasc Biol. 1999;19:1484–1490. DOI: 10.1161/01.ATV.19.6.1484.
    1. Currie C, Molcho M, Boyce W, Holstein B, Torsheim T, Richter M. Researching health inequalities in adolescents: the development of the Health Behaviour in School‐Aged Children (HBSC) family affluence scale. Soc Sci Med. 2008;66:1429–1436. DOI: 10.1016/j.socscimed.2007.11.024.
    1. Neuhauser HK, Thamm M, Ellert U, Hense HW, Rosario AS. Blood pressure percentiles by age and height from nonoverweight children and adolescents in Germany. Pediatrics. 2011;127:e978–e988. DOI: 10.1542/peds.2010-1290.
    1. Overwyk KJ, Zhao L, Zhang Z, Wiltz JL, Dunford EK, Cogswell ME. Trends in blood pressure and usual dietary sodium intake among children and adolescents, National Health and Nutrition Examination Survey 2003 to 2016. Hypertension. 2019;74:260–266. DOI: 10.1161/HYPERTENSIONAHA.118.12844.
    1. Kromeyer‐Hauschild K, Wabitsch M, Kunze D, Geller F, Geiß HC, Hesse V, von Hippel A, Jaeger U, Johnsen D, Korte W, et al. Perzentile für den body‐mass‐index für das Kindes‐ und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilk. 2001;149:807–818. DOI: 10.1007/s001120170107.
    1. Kromeyer‐Hauschild K, Dortschy R, Stolzenberg H, Neuhauser H, Rosario AS. Nationally representative waist circumference percentiles in German adolescents aged 11.0‐18.0 years. Int J Pediatr Obes. 2011;6:e129–e137. DOI: 10.3109/17477166.2010.490267.
    1. Styne DM, Arslanian SA, Connor EL, Farooqi IS, Murad MH, Silverstein JH, Yanovski JA. Pediatric obesity‐assessment, treatment, and prevention: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2017;102:709–757. DOI: 10.1210/jc.2016-2573.
    1. Li C, Ford ES, Mokdad AH, Cook S. Recent trends in waist circumference and waist‐height ratio among US children and adolescents. Pediatrics. 2006;118:e1390–e1398. DOI: 10.1542/peds.2006-1062.
    1. Al‐Hamad D, Raman V. Metabolic syndrome in children and adolescents. Transl Pediatr. 2017;6:397–407. DOI: 10.21037/tp.2017.10.02.
    1. Spence JD, Hegele RA. Noninvasive phenotypes of atherosclerosis: similar windows but different views. Stroke. 2004;35:649–653. DOI: 10.1161/01.STR.0000116103.19029.DB.
    1. Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, Csiba L, Desvarieux M, Ebrahim S, Hernandez Hernandez R, et al. Mannheim carotid intima‐media thickness and plaque consensus (2004–2006–2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc Dis. 2012;34:290–296. DOI: 10.1159/000343145.
    1. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima‐media thickness: a systematic review and meta‐analysis. Circulation. 2007;115:459–467. DOI: 10.1161/CIRCULATIONAHA.106.628875.
    1. Cheung BM, Lauder IJ, Lau CP, Kumana CR. Meta‐analysis of large randomized controlled trials to evaluate the impact of statins on cardiovascular outcomes. Br J Clin Pharmacol. 2004;57:640–651. DOI: 10.1111/j.1365-2125.2003.02060.x.
    1. Holmes MV, Asselbergs FW, Palmer TM, Drenos F, Lanktree MB, Nelson CP, Dale CE, Padmanabhan S, Finan C, Swerdlow DI, et al. Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J. 2015;36:539–550. DOI: 10.1093/eurheartj/eht571.
    1. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991;88:1785–1792. DOI: 10.1172/JCI115499.
    1. Varbo A, Benn M, Tybjærg‐Hansen A, Jørgensen AB, Frikke‐Schmidt R, Nordestgaard BG. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013;61:427–436. DOI: 10.1016/j.jacc.2012.08.1026.
    1. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626–635. DOI: 10.1016/S0140-6736(14)61177-6.
    1. Nordestgaard BG, Langlois MR, Langsted A, Chapman MJ, Aakre KM, Baum H, Borén J, Bruckert E, Catapano A, Cobbaert C, et al. Quantifying atherogenic lipoproteins for lipid‐lowering strategies: consensus‐based recommendations from EAS and EFLM. Atherosclerosis. 2020;294:46–61. DOI: 10.1016/j.atherosclerosis.2019.12.005.
    1. Jourdan C, Wühl E, Litwin M, Fahr K, Trelewicz J, Jobs K, Schenk J‐P, Grenda R, Mehls O, Tröger J, et al. Normative values for intima‐media thickness and distensibility of large arteries in healthy adolescents. J Hypertens. 2005;23:1707–1715. DOI: 10.1097/01.hjh.0000178834.26353.d5.
    1. GBD 2017 Risk Factor Collaborators . Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990‐2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1923–1994. DOI: 10.1016/S0140-6736(18)32225-6.
    1. Lawes CM, Vander Hoorn S, Rodgers A. Global burden of blood‐pressure‐related disease, 2001. Lancet. 2008;371:1513–1518. DOI: 10.1016/S0140-6736(08)60655-8.
    1. Ninomiya T, Perkovic V, Turnbull F, Neal B, Barzi F, Cass A, Baigent C, Chalmers J, Li N, Woodward M, et al. Blood pressure lowering and major cardiovascular events in people with and without chronic kidney disease: meta‐analysis of randomised controlled trials. BMJ. 2013;347:f5680.
    1. Vasan RS, Massaro JM, Wilson PW, Seshadri S, Wolf PA, Levy D, D'Agostino RB. Antecedent blood pressure and risk of cardiovascular disease: the Framingham Heart Study. Circulation. 2002;105:48–53. DOI: 10.1161/hc0102.101774.
    1. Nieto FJ, Diez‐Roux A, Szklo M, Comstock GW, Sharrett AR. Short‐ and long‐term prediction of clinical and subclinical atherosclerosis by traditional risk factors. J Clin Epidemiol. 1999;52:559–567. DOI: 10.1016/S0895-4356(99)00030-X.
    1. Kunutsor SK, Apekey TA, Khan H. Liver enzymes and risk of cardiovascular disease in the general population: a meta‐analysis of prospective cohort studies. Atherosclerosis. 2014;236:7–17. DOI: 10.1016/j.atherosclerosis.2014.06.006.
    1. Liu J, Au Yeung SL, Lin SL, Leung GM, Schooling CM. Liver enzymes and risk of ischemic heart disease and type 2 diabetes mellitus: a Mendelian randomization study. Sci Rep. 2016;6:38813. DOI: 10.1038/srep38813.
    1. Goessling W, Massaro JM, Vasan RS, D'Agostino RB Sr, Ellison RC, Fox CS. Aminotransferase levels and 20‐year risk of metabolic syndrome, diabetes, and cardiovascular disease. Gastroenterology. 2008;135:1935–1944, 1944.e1931.
    1. Chang Y, Ryu S, Sung E, Jang Y. Higher concentrations of alanine aminotransferase within the reference interval predict nonalcoholic fatty liver disease. Clin Chem. 2007;53:686–692. DOI: 10.1373/clinchem.2006.081257.
    1. Targher G, Day CP, Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med. 2010;363:1341–1350. DOI: 10.1056/NEJMra0912063.
    1. Greenland P, Knoll MD, Stamler J, Neaton JD, Dyer AR, Garside DB, Wilson PW. Major risk factors as antecedents of fatal and nonfatal coronary heart disease events. JAMA. 2003;290:891–897. DOI: 10.1001/jama.290.7.891.
    1. Yusuf S, Hawken S, Ôunpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case‐control study. Lancet. 2004;364:937–952. DOI: 10.1016/S0140-6736(04)17018-9.
    1. Perak AM, Ning H, Khan SS, Bundy JD, Allen NB, Lewis CE, Jacobs DR Jr, Van Horn LV, Lloyd‐Jones DM. Associations of late adolescent or young adult cardiovascular health with premature cardiovascular disease and mortality. J Am Coll Cardiol. 2020;76:2695–2707. DOI: 10.1016/j.jacc.2020.10.002.
    1. Allen NB, Krefman AE, Labarthe D, Greenland P, Juonala M, Kähönen M, Lehtimäki T, Day RS, Bazzano LA, Van Horn LV, et al. Cardiovascular health trajectories from childhood through middle age and their association with subclinical atherosclerosis. JAMA Cardiol. 2020;5:557–566. DOI: 10.1001/jamacardio.2020.0140.
    1. Stary HC. Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis. 1989;9:I19–I32.
    1. Martin SS, Blumenthal RS, Miller M. LDL cholesterol: the lower the better. Med Clin North Am. 2012;96:13–26. DOI: 10.1016/j.mcna.2012.01.009.
    1. Nemet D, Barkan S, Epstein Y, Friedland O, Kowen G, Eliakim A. Short‐ and long‐term beneficial effects of a combined dietary‐behavioral‐physical activity intervention for the treatment of childhood obesity. Pediatrics. 2005;115:e443–e449. DOI: 10.1542/peds.2004-2172.
    1. Efficacy and safety of lowering dietary intake of fat and cholesterol in children with elevated low‐density lipoprotein cholesterol. The Dietary Intervention Study in Children (DISC). The Writing Group for the DISC Collaborative Research Group. JAMA. 1995;273:1429–1435.
    1. Franzese A, Vajro P, Argenziano A, Puzziello A, Iannucci MP, Saviano MC, Brunetti F, Rubino A. Liver involvement in obese children. Ultrasonography and liver enzyme levels at diagnosis and during follow‐up in an Italian population. Dig Dis Sci. 1997;42:1428–1432.
    1. Vajro P, Fontanella A, Perna C, Orso G, Tedesco M, De Vincenzo A. Persistent hyperaminotransferasemia resolving after weight reduction in obese children. J Pediatr. 1994;125:239–241. DOI: 10.1016/S0022-3476(94)70202-0.
    1. Brix N, Ernst A, Lauridsen LLB, Parner E, Stovring H, Olsen J, Henriksen TB, Ramlau‐Hansen CH. Timing of puberty in boys and girls: a population‐based study. Paediatr Perinat Epidemiol. 2019;33:70–78. DOI: 10.1111/ppe.12507.
    1. Eikendal AL, Groenewegen KA, Bots ML, Peters SA, Uiterwaal CS, den Ruijter HM. Relation between adolescent cardiovascular risk factors and carotid intima‐media echogenicity in healthy young adults: the Atherosclerosis Risk in Young Adults (ARYA) Study. J Am Heart Assoc. 2016;5:e002941. DOI: 10.1161/JAHA.115.002941.
    1. Volanen I, Jarvisalo MJ, Vainionpaa R, Arffman M, Kallio K, Angle S, Ronnemaa T, Viikari J, Marniemi J, Raitakari OT, et al. Increased aortic intima‐media thickness in 11‐year‐old healthy children with persistent Chlamydia pneumoniae seropositivity. Arterioscler Thromb Vasc Biol. 2006;26:649–655.
    1. Lu Y, Pechlaner R, Cai J, Yuan H, Huang Z, Yang G, Wang J, Chen Z, Kiechl S, Xu Q. Trajectories of age‐related arterial stiffness in chinese men and women. J Am Coll Cardiol. 2020;75:870–880. DOI: 10.1016/j.jacc.2019.12.039.

Source: PubMed

3
Iratkozz fel