Synthesis, Radiolabelling and In Vitro Characterization of the Gallium-68-, Yttrium-90- and Lutetium-177-Labelled PSMA Ligand, CHX-A''-DTPA-DUPA-Pep

Benjamin Baur, Christoph Solbach, Elena Andreolli, Gordon Winter, Hans-Jürgen Machulla, Sven N Reske, Benjamin Baur, Christoph Solbach, Elena Andreolli, Gordon Winter, Hans-Jürgen Machulla, Sven N Reske

Abstract

Since prostate-specific membrane antigen (PSMA) has been identified as a diagnostic target for prostate cancer, many urea-based small PSMA-targeting molecules were developed. First, the clinical application of these Ga-68 labelled compounds in positron emission tomography (PET) showed their diagnostic potential. Besides, the therapy of prostate cancer is a demanding field, and the use of radiometals with PSMA bearing ligands is a valid approach. In this work, we describe the synthesis of a new PSMA ligand, CHX-A''-DTPA-DUPA-Pep, the subsequent labelling with Ga-68, Lu-177 and Y-90 and the first in vitro characterization. In cell investigations with PSMA-positive LNCaP C4-2 cells, KD values of ≤14.67 ± 1.95 nM were determined, indicating high biological activities towards PSMA. Radiosyntheses with Ga-68, Lu-177 and Y-90 were developed under mild reaction conditions (room temperature, moderate pH of 5.5 and 7.4, respectively) and resulted in nearly quantitative radiochemical yields within 5 min.

Figures

Scheme 1
Scheme 1
Synthesis of cyclohexyldiethylenetriamine pentaacetic acid (5S,8S,22S,26S)-1-amino-5,8-dibenzyl-4,7,10,19,24-pentaoxo-3,6,9,18,23,25-hexaazaoctacosane-22,26,28-tri-carboxylic acid trifluoroacetate (CHX-A''-DTPA-DUPA-Pep).
Figure 1
Figure 1
Exemplary chromatograms of [68Ga]Ga-CHX-A''-DTPA-DUPA-Pep in the radioactivity channel (upper signal; the first peak shows the total activity injected detector bypass for recovery rate calculation) and CHX-A''-DTPA-DUPA-Pep in the UV-channel (bottom signal; λ: 254 nm).
Figure 2
Figure 2
Dependence of the RCY of [68Ga]Ga-CHX-A''-DTPA-DUPA-Pep on the peptide amount (concentration) and reaction time at room temperature.
Figure 3
Figure 3
Dependence of the RCY of [90Y]Y-CHX-A''-DTPA-DUPA-Pep on peptide amount (concentration) and reaction time at room temperature.
Figure 4
Figure 4
Dependence of the RCY of [177Lu]Lu-CHX-A''-DTPA-DUPA-Pep on peptide amount (concentration) and reaction time at room temperature.
Figure 5
Figure 5
Stability study of [68Ga]Ga-CHX-A''-DTPA-DUPA-Pep in human serum: overlaid radio-HPLC chromatograms after 8 h (1), 4 h (2), 2 h (3) and 30 min (4). The first peak shows the total activity injected (the detector bypass for the recovery rate calculation).

References

    1. Siegel R., Ward E., Brawley O., Jemal A. Cancer statistics, 2011: The impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin. 2011;61:212–236. doi: 10.3322/caac.20121.
    1. Robinson M.B., Blakely R.D., Couto R., Coyle J.T. Hydrolysis of the brain dipeptide n-acetyl-l-aspartyl-l-glutamate. Identification and characterization of a novel n-acetylated alpha-linked acidic dipeptidase activity from rat brain. J. Biol. Chem. 1987;262:14498–14506.
    1. Olson W.C., Heston W.D., Rajasekaran A.K. Clinical trials of cancer therapies targeting prostate-specific membrane antigen. Rev. Recent Clin. Trials. 2007;2:182–190. doi: 10.2174/157488707781662724.
    1. Hao G., Zhou J., Guo Y., Long M.A., Anthony T., Stanfield J., Hsieh J.T., Sun X. A cell permeable peptide analog as a potential-specific pet imaging probe for prostate cancer detection. Amino Acids. 2011;41:1093–1101. doi: 10.1007/s00726-010-0515-5.
    1. Su S.L., Huang I.P., Fair W.R., Powell C.T., Heston W.D. Alternatively spliced variants of prostate-specific membrane antigen rna: Ratio of expression as a potential measurement of progression. Cancer Res. 1995;55:1441–1443.
    1. Wernicke A.G., Varma S., Greenwood E.A., Christos P.J., Chao K.S.C., Liu H., Bander N.H., Shin S.J. Prostate-specific membrane antigen expression in tumor-associated vasculature of breast cancers. APMIS. 2013 doi: 10.1111/apm.12195.
    1. Kularatne S.A., Venkatesh C., Santhapuram H.K., Wang K., Vaitilingam B., Henne W.A., Low P.S. Synthesis and biological analysis of prostate-specific membrane antigen-targeted anticancer prodrugs. J. Med. Chem. 2010;53:7767–7777.
    1. Malik N., Machulla H.J., Solbach C., Winter G., Reske S.N., Zlatopolskiy B. Radiosynthesis of a new psma targeting ligand ([18f]fpy-dupa-pep) Appl. Radiat. Isot. 2011;69:1014–1018. doi: 10.1016/j.apradiso.2011.03.041.
    1. Eder M., Schafer M., Bauder-Wust U., Hull W.E., Wangler C., Mier W., Haberkorn U., Eisenhut M. 68ga-complex lipophilicity and the targeting property of a urea-based psma inhibitor for pet imaging. Bioconjug. Chem. 2012;23:688–697. doi: 10.1021/bc200279b.
    1. Stabin M.G., Siegel J.A. Physical models and dose factors for use in internal dose assessment. Health Phys. 2003;85:294–310. doi: 10.1097/00004032-200309000-00006.
    1. Van Essen M., Krenning E.P., de Jong M., Valkema R., Kwekkeboom D.J. Peptide receptor radionuclide therapy with radiolabelled somatostatin analogues in patients with somatostatin receptor positive tumours. Acta Oncol. 2007;46:723–734. doi: 10.1080/02841860701441848.
    1. Kwekkeboom D.J., Teunissen J.J., Bakker W.H., Kooij P.P., de Herder W.W., Feelders R.A., van Eijck C.H., Esser J.P., Kam B.L., Krenning E.P. Radiolabeled somatostatin analog [177lu-dota0,tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J. Clin. Oncol. 2005;23:2754–2762.
    1. Otte A., Herrmann R., Heppeler A., Behe M., Jermann E., Powell P., Maecke H.R., Muller J. Yttrium-90 dotatoc: First clinical results. Eur. J. Nucl. Med. 1999;26:1439–1447. doi: 10.1007/s002590050476.
    1. Kosmas C., Snook D., Gooden C.S., Courtenayluck N.S., Mccall M.J., Meares C.F., Epenetos A.A. Development of humoral immune-responses against a macrocyclic chelating agent (dota) in cancer-patients receiving radioimmunoconjugates for imaging and therapy. Cancer Res. 1992;52:904–911.
    1. Kodama M., Koike T., Mahatma A.B., Kimura E. Thermodynamic and kinetic studies of lanthanide complexes of 1,4,7,10,13-pentaazacyclopentadecane-n,n',n'',n''',n''''-pentaacetic acid and 1,4,7,10,13,16-hexaazacyclooctadecane-n,n',n'',n''',n'''',n'''''-hexaacetic acid. Inorg. Chem. 1991;30:1270–1273. doi: 10.1021/ic00006a021.
    1. Wadas T.J., Wong E.H., Weisman G.R., Anderson C.J. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for pet and spect imaging of disease. Chem. Rev. 2010;110:2858–2902. doi: 10.1021/cr900325h.
    1. Kobayashi H., Wu C., Yoo T.M., Sun B.F., Drumm D., Pastan I., Paik C.H., Gansow O.A., Carrasquillo J.A., Brechbiel M.W. Evaluation of the in vivo biodistribution of yttrium-labeled isomers of chx-dtpa-conjugated monoclonal antibodies. J. Nucl. Med. 1998;39:829–836.
    1. Winter G., Zlatopolskiy B., Kull T., Bertram J., Genze F., Cudek G., Machulla H.-J., Reske S. 68ga-dota-dupa-pep as a new peptide conjugate for molecular imaging of prostate carcinoma. J. Nucl. Med. Meet. Abstr. 2011;52:1597.
    1. Reske S.N., Winter G., Baur B., Machulla H.J., Kull T. Comment on afshar-oromieh et al.: Pet imaging with a [68ga]gallium-labelled psma ligand for the diagnosis of prostate cancer: Biodistribution in humans and first evaluation of tumour lesions. Eur. J. Nucl. Med. Mol. Imaging. 2013;40:969–970. doi: 10.1007/s00259-013-2385-z.
    1. Afshar-Oromieh A., Malcher A., Eder M., Eisenhut M., Linhart H.G., Hadaschik B.A., Holland-Letz T., Giesel F.L., Kratochwil C., Haufe S., et al. Pet imaging with a [68ga] gallium-labelled psma ligand for the diagnosis of prostate cancer: Biodistribution in humans and first evaluation of tumour lesions. Eur. J. Nucl. Med. Mol. Imaging. 2013;40:486–495. doi: 10.1007/s00259-012-2298-2.
    1. Meyer G.J., Macke H., Schuhmacher J., Knapp W.H., Hofmann M. 68a-labelled dota-derivatised peptide ligands. Eur. J. Nucl. Med. Mol. Imaging. 2004;31:1097–1104.

Source: PubMed

3
Iratkozz fel