The Need for Standardized Assessment of Muscle Quality in Skeletal Muscle Function Deficit and Other Aging-Related Muscle Dysfunctions: A Symposium Report

Rosaly Correa-de-Araujo, Michael O Harris-Love, Iva Miljkovic, Maren S Fragala, Brian W Anthony, Todd M Manini, Rosaly Correa-de-Araujo, Michael O Harris-Love, Iva Miljkovic, Maren S Fragala, Brian W Anthony, Todd M Manini

Abstract

A growing body of scientific literature suggests that not only changes in skeletal muscle mass, but also other factors underpinning muscle quality, play a role in the decline in skeletal muscle function and impaired mobility associated with aging. A symposium on muscle quality and the need for standardized assessment was held on April 28, 2016 at the International Conference on Frailty and Sarcopenia Research in Philadelphia, Pennsylvania. The purpose of this symposium was to provide a venue for basic science and clinical researchers and expert clinicians to discuss muscle quality in the context of skeletal muscle function deficit and other aging-related muscle dysfunctions. The present article provides an expanded introduction concerning the emerging definitions of muscle quality and a potential framework for scientific inquiry within the field. Changes in muscle tissue composition, based on excessive levels of inter- and intra-muscular adipose tissue and intramyocellular lipids, have been found to adversely impact metabolism and peak force generation. However, methods to easily and rapidly assess muscle tissue composition in multiple clinical settings and with minimal patient burden are needed. Diagnostic ultrasound and other assessment methods continue to be developed for characterizing muscle pathology, and enhanced sonography using sensors to provide user feedback and improve reliability is currently the subject of ongoing investigation and development. In addition, measures of relative muscle force such as specific force or grip strength adjusted for body size have been proposed as methods to assess changes in muscle quality. Furthermore, performance-based assessments of muscle power via timed tests of function and body size estimates, are associated with lower extremity muscle strength may be responsive to age-related changes in muscle quality. Future aims include reaching consensus on the definition and standardized assessments of muscle quality, and providing recommendations to address critical clinical and technology research gaps within the field.

Keywords: imaging; muscle power; muscle quality; muscle strength; myosteatosis; sarcopenia; skeletal muscle function deficit.

Figures

Figure 1
Figure 1
Potential mechanisms underlying the effects of myosteatosis. Increased myosteatosis may lead to metabolic and mechanical changes in the muscle through a variety of mechanisms. Changes in muscle cell metabolism can lead to increased insulin resistance and inflammation, aiding in the development of diabetes, and cardiovascular diseases. Alterations in muscle architecture can also lead to muscular dysfunction and functional decline. Both processes may be increased through activation of proteolytic systems, which may also result from increased myosteatosis.
Figure 2
Figure 2
A proposed performance-based index of muscle power. (A–D) The Muscle Quality Index (MQI) is a performance-based functional assessment involving ten repetitions of the sit-to-stand maneuver performed as rapidly as possible. The test requires the use of a scale to record body mass (A), a tape measure to obtain leg length (B), along with a stopwatch and chair and for the timed functional task (C,D). The MQI score is calculated using the following equation: ((leg length × 0.4) × body mass × gravity × 10)/sit-to-stand time.
Figure 3
Figure 3
Relative peak grip force and muscle echogenicity expressed in grayscale units. Grayscale measures derived from the echogenicity of the rectus femoris have an inverse relationship with relative grip strength (peak force scaled to body weight). The filled data markers () represent study participants with Class I sarcopenia (5.76–6.75 kg/m2) based on lean body mass estimates from DXA scanning, and the clear data markers (◦) represent study participants with normal body mass (>6.75 kg/m2). BW, body weight; scaled peak grip force, peak force in kg/body weight in kg; both scaled peak force and grayscale values are unitless measures.
Figure 4
Figure 4
Variation in shear wave elastography secondary to the applied scanning force. Significant variation in shear wave elastography estimates of tissue Young's modulus shown in the figure is a function of preload differences typical of clinical sonography. The varying preload conditions depicted are typical of those seen across a range of operators in routine abdominal sonography and the resultant change in estimated tissue Young's modulus. This variation is explained by the observation that different bias compression levels pre-strain the tissue to different operating points along the tissue's non-linear stress-strain response. Estimated Young's modulus increases from 21.1 to 64.1 kPa in the vastus medialis as applied force (preload) increases from 1 to 18 N.
Figure 5
Figure 5
Ultrasound images of the biceps from a healthy subject at four different forces. Variation in the muscle thickness (denoted by the height of the yellow boxes), based on the measurement from the bone to the subcutaneous fat-muscle separation layer, is highly dependent on the examiner-generated force during scanning.
Figure 6
Figure 6
Sound transducer localization using unique skin features. A freehand ultrasound platform featuring an optical camera kinematically coupled to an ultrasound transducer may be used with software that extracts unique skin features and provides transducer localization relative to the skin features. The ultrasound transducer registration facilitates the acquisition of three-dimensional ultrasound volume estimates derived from a standard optically tracked two-dimensional sonograms. This approach allows for scanned images to be generated and reformatted in any plane to allow for the comparison of matched images across serial examinations.

References

    1. Abe T., Kondo M., Kawakami Y., Fukunaga T. (1994). Prediction equations for body composition of Japanese adults by B-mode ultrasound. Am. J. Hum. Biol. 6, 161–170. 10.1002/ajhb.1310060204
    1. Abe T., Thiebaud R. S., Loenneke J. P. (2016). Age-related change in handgrip strength in men and women: is muscle quality a contributing factor? Age Dordr. Neth. 38, 28. 10.1007/s11357-016-9891-4
    1. Ahima R. S., Park H. K. (2015). Connecting myokines and metabolism. Endocrinol. Metab. Seoul Korea 30, 235–245. 10.3803/EnM.2015.30.3.235
    1. Akagi R., Takai Y., Ohta M., Kanehisa H., Kawakami Y., Fukunaga T. (2009). Muscle volume compared to cross-sectional area is more appropriate for evaluating muscle strength in young and elderly individuals. Age Ageing 38, 564–569. 10.1093/ageing/afp122
    1. Albu J. B., Kovera A. J., Allen L., Wainwright M., Berk E., Raja-Khan N., et al. . (2005). Independent association of insulin resistance with larger amounts of intermuscular adipose tissue and a greater acute insulin response to glucose in African American than in white nondiabetic women. Am. J. Clin. Nutr. 82, 1210–1217.
    1. Alley D. E., Shardell M. D., Peters K. W., McLean R. R., Dam T.-T. L., Kenny A. M., et al. . (2014). Grip strength cutpoints for the identification of clinically relevant weakness. J. Gerontol. A Biol. Sci. Med. Sci. 69, 559–566. 10.1093/gerona/glu011
    1. Anneriet M., Heemskerk B. S. P., Bruce M., Damon B. S. P. (2007). Diffusion tensor MRI assessment of skeletal muscle architecture. Curr. Med. Imaging Rev. 3, 152–160. 10.2174/157340507781386988
    1. Aubrey J., Esfandiari N., Baracos V. E., Buteau F. A., Frenette J., Putman C. T., et al. . (2014). Measurement of skeletal muscle radiation attenuation and basis of its biological variation. Acta Physiol. Oxf. Engl. 210, 489–497. 10.1111/apha.12224
    1. Bamman M. M., Newcomer B. R., Larson-Meyer D. E., Weinsier R. L., Hunter G. R. (2000). Evaluation of the strength-size relationship in vivo using various muscle size indices. Med. Sci. Sports Exerc. 32, 1307–1313. 10.1097/00005768-200007000-00019
    1. Barbat-Artigas S., Rolland Y., Zamboni M., Aubertin-Leheudre M. (2012). How to assess functional status: a new muscle quality index. J. Nutr. Health Aging 16, 67–77. 10.1007/s12603-012-0004-5
    1. Bergstrom J. (1975). Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand. J. Clin. Lab. Invest. 35, 609–616. 10.3109/00365517509095787
    1. Beyer K. S., Fukuda D. H., Boone C. H., Wells A. J., Townsend J. R., Jajtner A. R., et al. . (2016). Short-term unilateral resistance training results in cross education of strength without changes in muscle size, activation, or endocrine response. J. Strength Cond. Res. 30, 1213–1223. 10.1519/JSC.0000000000001219
    1. Boettcher M., Machann J., Stefan N., Thamer C., Häring H.-U., Claussen C. D., et al. . (2009). Intermuscular adipose tissue (IMAT): association with other adipose tissue compartments and insulin sensitivity. J. Magn. Reson. Imaging 29, 1340–1345. 10.1002/jmri.21754
    1. Brandt C., Pedersen B. K. (2010). The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J. Biomed. Biotechnol. 2010:520258. 10.1155/2010/520258
    1. Brown J. C., Harhay M. O., Harhay M. N. (2016). Sarcopenia and mortality among a population-based sample of community-dwelling older adults. J. Cachexia Sarcopenia Muscle 7, 290–298. 10.1002/jcsm.12073
    1. Budui S. L., Rossi A. P., Zamboni M. (2015). The pathogenetic bases of sarcopenia. Clin. Cases Miner. Bone Metab. Off. J. Ital. Soc. Osteoporos. Miner. Metab. Skelet. Dis. 12, 22–26. 10.11138/ccmbm/2015.12.1.022
    1. Bushby K., Finkel R., Birnkrant D. J., Case L. E., Clemens P. R., Cripe L., et al. . (2010). Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 9, 77–93. 10.1016/S1474-4422(09)70271-6
    1. Cadore E. L., Izquierdo M., Conceição M., Radaelli R., Pinto R. S., Baroni B. M., et al. . (2012). Echo intensity is associated with skeletal muscle power and cardiovascular performance in elderly men. Exp. Gerontol. 47, 473–478. 10.1016/j.exger.2012.04.002
    1. Cartwright M. S., Demar S., Griffin L. P., Balakrishnan N., Harris J. M., Walker F. O. (2013). Validity and reliability of nerve and muscle ultrasound. Muscle Nerve 47, 515–521. 10.1002/mus.23621
    1. Cawthon P. M., Blackwell T. L., Cauley J., Kado D. M., Barrett-Connor E., Lee C. G., et al. . (2015). Evaluation of the usefulness of consensus definitions of sarcopenia in older men: results from the Observational Osteoporotic Fractures in Men Cohort Study. J. Am. Geriatr. Soc. 63, 2247–2259. 10.1111/jgs.13788
    1. Cawthon P. M., Fox K. M., Gandra S. R., Delmonico M. J., Chiou C.-F., Anthony M. S., et al. . (2009). Do muscle mass, muscle density, strength, and physical function similarly influence risk of hospitalization in older adults? J. Am. Geriatr. Soc. 57, 1411–1419. 10.1111/j.1532-5415.2009.02366.x
    1. Cesari M., Leeuwenburgh C., Lauretani F., Onder G., Bandinelli S., Maraldi C., et al. . (2006). Frailty syndrome and skeletal muscle: results from the Invecchiare in Chianti study. Am. J. Clin. Nutr. 83, 1142–1148.
    1. Charlier R., Mertens E., Lefevre J., Thomis M. (2015). Muscle mass and muscle function over the adult life span: a cross-sectional study in Flemish adults. Arch. Gerontol. Geriatr. 61, 161–167. 10.1016/j.archger.2015.06.009
    1. Chilibeck P. D., Calder A. W., Sale D. G., Webber C. E. (1998). A comparison of strength and muscle mass increases during resistance training in young women. Eur. J. Appl. Physiol. 77, 170–175. 10.1007/s004210050316
    1. Clark B. C., Manini T. M. (2010). Functional consequences of sarcopenia and dynapenia in the elderly. Curr. Opin. Clin. Nutr. Metab. Care 13, 271–276. 10.1097/MCO.0b013e328337819e
    1. Clark B. C., Issac L. C., Lane J. L., Damron L. A., Hoffman R. L. (2008). Neuromuscular plasticity during and following 3 wk of human forearm cast immobilization. J. Appl. Physiol. 105, 868–878. 10.1152/japplphysiol.90530.2008
    1. Clynes M. A., Edwards M. H., Buehring B., Dennison E. M., Binkley N., Cooper C. (2015). Definitions of sarcopenia: associations with previous falls and fracture in a population sample. Calcif. Tissue Int. 97, 1–11. 10.1007/s00223-015-0044-z
    1. Colaianni G., Grano M. (2015). Role of Irisin on the bone-muscle functional unit. Bonekey Rep. 4:765. 10.1038/bonekey.2015.134
    1. Correa-de-Araujo R., Hadley E. (2014). Skeletal muscle function deficit: a new terminology to embrace the evolving concepts of sarcopenia and age-related muscle dysfunction. J. Gerontol. A Biol. Sci. Med. Sci. 69, 591–594. 10.1093/gerona/glt208
    1. Delmonico M. J., Harris T. B., Visser M., Park S. W., Conroy M. B., Velasquez-Mieyer P., et al. . (2009). Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am. J. Clin. Nutr. 90, 1579–1585. 10.3945/ajcn.2009.28047
    1. Dhyani M., Gilbertson M., Anvari A., Anthony B., Samir A. (2014). Precise quantification of sonographic forces: a first step toward reducing ergonomic injury, in Paper presented at: American Institute of Ultrasound Medicine (Las Vegas, NV: ).
    1. Ding J., Visser M., Kritchevsky S. B., Nevitt M., Newman A., Sutton-Tyrrell K., et al. . (2004). The association of regional fat depots with hypertension in older persons of white and African American ethnicity. Am. J. Hypertens. 17, 971–976. 10.1016/j.amjhyper.2004.05.001
    1. Dubé J. J., Amati F., Stefanovic-Racic M., Toledo F. G. S., Sauers S. E., Goodpaster B. H. (2008). Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete's paradox revisited. Am. J. Physiol. Endocrinol. Metab. 294, E882–E888. 10.1152/ajpendo.00769.2007
    1. Durheim M. T., Slentz C. A., Bateman L. A., Mabe S. K., Kraus W. E. (2008). Relationships between exercise-induced reductions in thigh intermuscular adipose tissue, changes in lipoprotein particle size, and visceral adiposity. Am. J. Physiol. Endocrinol. Metab. 295, E407–E412. 10.1152/ajpendo.90397.2008
    1. Ebisui C., Tsujinaka T., Morimoto T., Kan K., Iijima S., Yano M., et al. . (1995). Interleukin-6 induces proteolysis by activating intracellular proteases (cathepsins B and L, proteasome) in C2C12 myotubes. Clin. Sci. 89, 431–439. 10.1042/cs0890431
    1. Eisenberg B. R. (2011). Quantitative ultrastructure of mammalian skeletal muscle, in Comprehensive Physiology, ed Terjung R. (Hoboken, NJ: John Wiley & Sons, Inc.). 10.1002/cphy.cp100103. (Accessed June 8, 2016).
    1. Enright P. L. (2003). The six-minute walk test. Respir. Care 48, 783–785.
    1. Ferrucci L., de Cabo R., Knuth N. D., Studenski S. (2011). Of Greek heroes, wiggling worms, mighty mice, and old body builders. J. Gerontol. A Biol. Sci. Med. Sci. 67A, 13–16. 10.1093/gerona/glr046
    1. Finanger E. L., Russman B., Forbes S. C., Rooney W. D., Walter G. A., Vandenborne K. (2012). Use of skeletal muscle MRI in diagnosis and monitoring disease progression in Duchenne muscular dystrophy. Phys. Med. Rehabil. Clin. . 23, 1–10. 10.1016/j.pmr.2011.11.004
    1. Fragala M. S., Alley D. E., Shardell M. D., Harris T. B., McLean R. R., Kiel D. P., et al. . (2016). Comparison of handgrip and leg extension strength in predicting slow gait speed in older adults. J. Am. Geriatr. Soc. 64, 144–150. 10.1111/jgs.13871
    1. Fragala M. S., Clark M. H., Walsh S. J., Kleppinger A., Judge J. O., Kuchel G. A., et al. . (2012). Gender differences in anthropometric predictors of physical performance in older adults. Gend. Med. 9, 445–456. 10.1016/j.genm.2012.10.004
    1. Fragala M. S., Dam T.-T. L., Barber V., Judge J. O., Studenski S. A., Cawthon P. M., et al. . (2015a). Strength and function response to clinical interventions of older women categorized by weakness and low lean mass using classifications from the Foundation for the National Institute of Health sarcopenia project. J. Gerontol. A Biol. Sci. Med. Sci. 70, 202–209. 10.1093/gerona/glu110
    1. Fragala M. S., Fukuda D. H., Stout J. R., Townsend J. R., Emerson N. S., Boone C. H., et al. . (2014). Muscle quality index improves with resistance exercise training in older adults. Exp. Gerontol. 53, 1–6. 10.1016/j.exger.2014.01.027
    1. Fragala M. S., Kenny A. M., Kuchel G. A. (2015b). Muscle quality in aging: a multi-dimensional approach to muscle functioning with applications for treatment. Sports Med. 45, 641–658. 10.1007/s40279-015-0305-z
    1. Francis P., Toomey C., McCormack W., Lyons M., Jakeman P. (2016). Measurement of maximal isometric torque and muscle quality of the knee extensors and flexors in healthy 50- to 70-year-old women. Clin. Physiol. Funct. Imaging. [Epub ahead of print]. 10.1111/cpf.12332
    1. Fukunaga T., Kawakami Y., Kuno S., Funato K., Fukashiro S. (1997). Muscle architecture and function in humans. J. Biomech. 30, 457–463. 10.1016/S0021-9290(96)00171-6
    1. Gallagher D., Kuznia P., Heshka S., Albu J., Heymsfield S. B., Goodpaster B., et al. . (2005). Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue. Am. J. Clin. Nutr. 81, 903–910.
    1. Gans C., de Vree F. (1987). Functional bases of fiber length and angulation in muscle. J. Morphol. 192, 63–85. 10.1002/jmor.1051920106
    1. Gans C., Gaunt A. S. (1991). Muscle architecture in relation to function. J. Biomech. 24(Suppl. 1), 53–65. 10.1016/0021-9290(91)90377-y
    1. Gerber C., Schneeberger A. G., Hoppeler H., Meyer D. C. (2007). Correlation of atrophy and fatty infiltration on strength and integrity of rotator cuff repairs: a study in thirteen patients. J. Shoulder Elb. Surg. Am. Shoulder Elb. Surg. Al 16, 691–696. 10.1016/j.jse.2007.02.122
    1. Gilbertson M. G., Anthony B. W. (2013). An ergonomic, instrumented ultrasound probe for 6-axis force/torque measurement, in Engineering in Medicine and Biology Society (EMBC) (Osaka: IEEE; ), 140–143.
    1. Goodpaster B. H. (2002). Measuring body fat distribution and content in humans. Curr. Opin. Clin. Nutr. Metab. Care 5, 481–487. 10.1097/00075197-200209000-00005
    1. Goodpaster B. H., Carlson C. L., Visser M., Kelley D. E., Scherzinger A., Harris T. B., et al. . (2001). Attenuation of skeletal muscle and strength in the elderly: the health ABC study. J. Appl. Physiol. 90, 2157–2165.
    1. Goodpaster B. H., Kelley D. E., Thaete F. L., He J., Ross R. (2000). Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J. Appl. Physiol. 89, 104–110.
    1. Goodpaster B. H., Krishnaswami S., Resnick H., Kelley D. E., Haggerty C., Harris T. B., et al. . (2003). Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care 26, 372–379. 10.2337/diacare.26.2.372
    1. Goodpaster B. H., Park S. W., Harris T. B., Kritchevsky S. B., Nevitt M., Schwartz A. V., et al. . (2006). The loss of skeletal muscle strength, mass, and quality in older adults: the Health, Aging and Body Composition study. J. Gerontol. A Biol. Sci. Med. Sci. 61, 1059–1064. 10.1093/gerona/61.10.1059
    1. Goodpaster B. H., Stenger V. A., Boada F., McKolanis T., Davis D., Ross R., et al. . (2004). Skeletal muscle lipid concentration quantified by magnetic resonance imaging. Am. J. Clin. Nutr. 79, 748–754.
    1. Guralnik J. M., Ferrucci L., Simonsick E. M., Salive M. E., Wallace R. B. (1995). Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N.Engl. J. Med. 332, 556–561. 10.1056/NEJM199503023320902
    1. Hairi N. N., Cumming R. G., Naganathan V., Handelsman D. J., Le Couteur D. G., Creasey H., et al. . (2010). Loss of muscle strength, mass (sarcopenia), and quality (specific force) and its relationship with functional limitation and physical disability: the Concord Health and Ageing in Men Project. J. Am. Geriatr. Soc. 58, 2055–2062. 10.1111/j.1532-5415.2010.03145.x
    1. Harris-Love M. O., Ismail C., Monfaredi R., Hernandez H. J. (2016a). Interrater reliability of quantitative ultrasound using force feedback among examiners with varied levels of experience. PeerJ 4, 1–17. 10.7717/peerj.2146
    1. Harris-Love M. O., Monfaredi R., Ismail C., Blackman M. R., Cleary K. (2014). Quantitative ultrasound: measurement considerations for the assessment of muscular dystrophy and sarcopenia. Front. Aging Neurosci. 6:172. 10.3389/fnagi.2014.00172
    1. Harris-Love M. O., Seamon B. A., Teixeira C., Ismail C. (2016b). Ultrasound estimates of muscle quality in older adults: reliability and comparison of Photoshop and ImageJ for the grayscale analysis of muscle echogenicity. PeerJ 4, 1–23. 10.7717/peerj.1721
    1. Hayot M., Michaud A., Koechlin C., Caron M.-A., Leblanc P., Préfaut C., et al. . (2005). Skeletal muscle microbiopsy: a validation study of a minimally invasive technique. Eur. Respir. J. 25, 431–440. 10.1183/09031936.05.00053404
    1. Hazzard W. R., Halter J. B. (eds). (2009). Hazzard's Geriatric Medicine and Gerontology, 6th Edn. New York, NY: McGraw-Hill Medical Pub. Division.
    1. Hegarty B. D., Cooney G. J., Kraegen E. W., Furler S. M. (2002). Increased efficiency of fatty acid uptake contributes to lipid accumulation in skeletal muscle of high fat-fed insulin-resistant rats. Diabetes 51, 1477–1484. 10.2337/diabetes.51.5.1477
    1. Henneman E. (1985). The size-principle: a deterministic output emerges from a set of probabilistic connections. J. Exp. Biol. 115, 105–112.
    1. Heymsfield S. B., Gonzalez M. C., Lu J., Jia G., Zheng J. (2015). Skeletal muscle mass and quality: evolution of modern measurement concepts in the context of sarcopenia. Proc. Nutr. Soc. 74, 355–366. 10.1017/S0029665115000129
    1. Hilton T. N., Tuttle L. J., Bohnert K. L., Mueller M. J., Sinacore D. R. (2008). Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: association with performance and function. Phys. Ther. 88, 1336–1344. 10.2522/ptj.20080079
    1. Ismail C., Zabal J., Hernandez H. J., Woletz P., Manning H., Teixeira C., et al. . (2015). Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia. Front. Physiol. 6:302. 10.3389/fphys.2015.00302
    1. Janssen I., Baumgartner R. N., Ross R., Rosenberg I. H., Roubenoff R. (2004a). Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am. J. Epidemiol. 159, 413–421. 10.1093/aje/kwh058
    1. Janssen I., Heymsfield S. B., Ross R. (2002). Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 50, 2074–2079. 10.1046/j.1532-5415.2002.50216.x
    1. Janssen I., Shepard D. S., Katzmarzyk P. T., Roubenoff R. (2004b). The healthcare costs of sarcopenia in the United States. J. Am. Geriatr. Soc. 52, 80–85. 10.1111/j.1532-5415.2004.52014.x
    1. Karampatos S., Papaioannou A., Beattie K. A., Maly M. R., Chan A., Adachi J. D., et al. . (2016). The reliability of a segmentation methodology for assessing intramuscular adipose tissue and other soft-tissue compartments of lower leg MRI images. MAGMA 29, 237–244. 10.1007/s10334-015-0510-7
    1. Keill J. (1708). An Account of Animal Secretion: the Quanitity of Blood in the Humane Body, and Muscular Motion. London: Printed for George Strahan.
    1. Kelley D. E., Goodpaster B. H. (2001). Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance. Diabetes Care 24, 933–941. 10.2337/diacare.24.5.933
    1. Kennis E., Verschueren S., Van Roie E., Thomis M., Lefevre J., Delecluse C. (2014). Longitudinal impact of aging on muscle quality in middle-aged men. Age Dordr. Neth. 36:9689. 10.1007/s11357-014-9689-1
    1. Kim J. Y., Hickner R. C., Cortright R. L., Dohm G. L., Houmard J. A. (2000). Lipid oxidation is reduced in obese human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 279, E1039–E1044.
    1. Kluger B. M., Krupp L. B., Enoka R. M. (2013). Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology 80, 409–416. 10.1212/WNL.0b013e31827f07be
    1. Koppaka S., Gilbertson M. W., Rutkove S. B., Anthony B. W. (2014a). Evaluating the clinical relevance of force-correlated ultrasound, in Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium (IEEE: ), 1172–1175.
    1. Koppaka S., Gilbertson M. W., Wu J. S., Rutkove S. B., Anthony B. W. (2014b). Assessing Duchenne muscular dystrophy with force-controlled ultrasound, in Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium (IEEE: ), 694–697.
    1. Kovalik J.-P., Slentz D., Stevens R. D., Kraus W. E., Houmard J. A., Nicoll J. B., et al. . (2011). Metabolic remodeling of human skeletal myocytes by cocultured adipocytes depends on the lipolytic state of the system. Diabetes 60, 1882–1893. 10.2337/db10-0427
    1. Kragstrup T. W., Kjaer M., Mackey A. L. (2011). Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging. Scand. J. Med. Sci. Sports 21, 749–757. 10.1111/j.1600-0838.2011.01377.x
    1. Landers K. A., Hunter G. R., Wetzstein C. J., Bamman M. M., Weinsier R. L. (2001). The interrelationship among muscle mass, strength, and the ability to perform physical tasks of daily living in younger and older women. J. Gerontol. Ser. Biol. Sci. Med. Sci. 56, B443–B448. 10.1093/gerona/56.10.b443
    1. Landi F., Cruz-Jentoft A. J., Liperoti R., Russo A., Giovannini S., Tosato M., et al. . (2013). Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilSIRENTE study. Age Ageing 42, 203–209. 10.1093/ageing/afs194
    1. Larson-Meyer D. E., Smith S. R., Heilbronn L. K., Kelley D. E., Ravussin E., Newcomer B. R., et al. . (2006). Muscle-associated triglyceride measured by computed tomography and magnetic resonance spectroscopy. Obesity 14, 73–87. 10.1038/oby.2006.10
    1. Larsson L., Karlsson J. (1978). Isometric and dynamic endurance as a function of age and skeletal muscle characteristics. Acta Physiol. Scand. 104, 129–136. 10.1111/j.1748-1716.1978.tb06259.x
    1. Lauretani F., Bandinelli S., Bartali B., Di Iorio A., Giacomini V., Corsi A. M., et al. . (2006). Axonal degeneration affects muscle density in older men and women. Neurobiol. Aging 27, 1145–1154. 10.1016/j.neurobiolaging.2005.06.009
    1. Lawrence J. C., Gower B. A., Garvey W. T., Muñoz A. J., Darnell B. E., Oster R. A., et al. . (2010). Relationship between insulin sensitivity and muscle lipids may differ with muscle group and ethnicity. Open Obes. J. 2, 137–144. 10.2174/1876823701002010137
    1. Lee D.-E., Kehlenbrink S., Lee H., Hawkins M., Yudkin J. S. (2009). Getting the message across: mechanisms of physiological cross talk by adipose tissue. Am. J. Physiol. Endocrinol. Metab. 296, E1210–E1229. 10.1152/ajpendo.00015.2009
    1. Lexell J., Henriksson-Larsén K., Winblad B., Sjöström M. (1983). Distribution of different fiber types in human skeletal muscles: effects of aging studied in whole muscle cross sections. Muscle Nerve 6, 588–595. 10.1002/mus.880060809
    1. Lexell J., Taylor C. C., Sjöström M. (1988). What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J. Neurol. Sci. 84, 275–294. 10.1016/0022-510X(88)90132-3
    1. Lieber R. L. (2010). Skeletal Muscle Structure, Function, and Plasticity: The Physiological Basis of Rehabilitation. Baltimore, MD: Lippincott Williams & Wilkins.
    1. Lieber R. L., Friden J. (2000). Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23, 1647–1666. 10.1002/1097-4598(200011)23:11<1647::AID-MUS1>;2-M
    1. Lowell B. B., Shulman G. I. (2005). Mitochondrial dysfunction and type 2 diabetes. Science 307, 384–387. 10.1126/science.1104343
    1. Machann J., Bachmann O. P., Brechtel K., Dahl D. B., Wietek B., Klumpp B., et al. . (2003). Lipid content in the musculature of the lower leg assessed by fat selective MRI: intra- and interindividual differences and correlation with anthropometric and metabolic data. J. Magn. Reson. Imaging 17, 350–357. 10.1002/jmri.10255
    1. Manini T. M., Clark B. C., Nalls M. A., Goodpaster B. H., Ploutz-Snyder L. L., Harris T. B. (2007). Reduced physical activity increases intermuscular adipose tissue in healthy young adults. Am. J. Clin. Nutr. 85, 377–384.
    1. Marcus R. L., Addison O., Dibble L. E., Foreman K. B., Morrell G., Lastayo P. (2012). Intramuscular adipose tissue, sarcopenia, and mobility function in older individuals. J. Aging Res. 2012:629637. 10.1155/2012/629637
    1. Mastrocola R., Collino M., Nigro D., Chiazza F., D'Antona G., Aragno M., et al. . (2015). Accumulation of advanced glycation end-products and activation of the SCAP/SREBP Lipogenetic pathway occur in diet-induced obese mouse skeletal muscle. PLoS ONE 10:e0119587. 10.1371/journal.pone.0119587
    1. Mathieu P., Lemieux I., Després J.-P. (2010). Obesity, inflammation, and cardiovascular risk. Clin. Pharmacol. Ther. 87, 407–416. 10.1038/clpt.2009.311
    1. McGregor R. A., Cameron-Smith D., Poppitt S. D. (2014). It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev. Heal. 3:9 10.1186/2046-2395-3-9
    1. McLean R. R., Shardell M. D., Alley D. E., Cawthon P. M., Fragala M. S., Harris T. B., et al. . (2014). Criteria for clinically relevant weakness and low lean mass and their longitudinal association with incident mobility impairment and mortality: the foundation for the National Institutes of Health (FNIH) sarcopenia project. J. Gerontol. A Biol. Sci. Med. Sci. 69, 576–583. 10.1093/gerona/glu012
    1. Merriam-Webster (2004). Merriam-Webster's Collegiate Dictionary, 11th Edn. Springfield: Merriam-Webster.
    1. Meyer D. C., Hoppeler H., von Rechenberg B., Gerber C. (2004). A pathomechanical concept explains muscle loss and fatty muscular changes following surgical tendon release. J. Orthop. Res. 22, 1004–1007. 10.1016/j.orthres.2004.02.009
    1. Miljkovic I., Zmuda J. M. (2010). Epidemiology of myosteatosis. Curr. Opin. Clin. Nutr. Metab. Care 13, 260–264. 10.1097/MCO.0b013e328337d826
    1. Miljkovic I., Cauley J. A., Petit M. A., Ensrud K. E., Strotmeyer E., Sheu Y., et al. . (2009). Greater adipose tissue infiltration in skeletal muscle among older men of African ancestry. J. Clin. Endocrinol. Metab. 94, 2735–2742. 10.1210/jc.2008-2541
    1. Miljkovic I., Cauley J. A., Wang P. Y., Holton K. F., Lee C. G., Sheu Y., et al. . (2013a). Abdominal myosteatosis is independently associated with hyperinsulinemia and insulin resistance among older men without diabetes. Obesity 21, 2118–2125. 10.1002/oby.20346
    1. Miljkovic I., Kuipers A. L., Cvejkus R., Bunker C. H., Patrick A. L., Gordon C. L., et al. . (2016). Myosteatosis increases with aging and is associated with incident diabetes in African ancestry men. Obesity 24, 476–482. 10.1002/oby.21328
    1. Miljkovic I., Kuipers A. L., Kuller L. H., Sheu Y., Bunker C. H., Patrick A. L., et al. . (2013b). Skeletal muscle adiposity is associated with serum lipid and lipoprotein levels in Afro-Caribbean men. Obesity 21, 1900–1907. 10.1002/oby.20214
    1. Miljkovic-Gacic I., Gordon C. L., Goodpaster B. H., Bunker C. H., Patrick A. L., Kuller L. H., et al. . (2008). Adipose tissue infiltration in skeletal muscle: age patterns and association with diabetes among men of African ancestry. Am. J. Clin. Nutr. 87, 1590–1595.
    1. Min K., Kwon O.-S., Smuder A. J., Wiggs M. P., Sollanek K. J., Christou D. D., et al. . (2015). Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicin-induced cardiac and skeletal muscle myopathy: doxorubicin-induced myopathy. J. Physiol. 593, 2017–2036. 10.1113/jphysiol.2014.286518
    1. Morley J. E. (2012). Sarcopenia in the elderly. Fam. Pract. 29(Suppl. 1), i44–i48. 10.1093/fampra/cmr063
    1. Narici M. V., Maffulli N. (2010). Sarcopenia: characteristics, mechanisms and functional significance. Br. Med. Bull. 95, 139–159. 10.1093/bmb/ldq008
    1. Narici M., Franchi M., Maganaris C. (2016). Muscle structural assembly and functional consequences. J. Exp. Biol. 219, 276–284. 10.1242/jeb.128017
    1. O'Sullivan C., Bentman S., Bennett K., Stokes M. (2007). Rehabilitative ultrasound imaging of the lower trapezius muscle: technical description and reliability. J. Orthop. Sports Phys. Ther. 37, 620–626. 10.2519/jospt.2007.2446
    1. Peachey L. D., Adrian R. H., Geiger S. R. (eds.). (1983). Skeletal Muscle, in Handbook of Physiology Handbook of Physiology (Bethesda, MD: American Physiological Society; ), 1–688.
    1. Pedersen B. K. (2011). Muscles and their myokines. J. Exp. Biol. 214, 337–346. 10.1242/jeb.048074
    1. Petrella J. K., Kim J.-S., Tuggle S. C., Bamman M. M. (2007). Contributions of force and velocity to improved power with progressive resistance training in young and older adults. Eur. J. Appl. Physiol. 99, 343–351. 10.1007/s00421-006-0353-z
    1. Reid K. F., Fielding R. A. (2012). Skeletal muscle power: a critical determinant of physical functioning in older adults. Exerc. Sport Sci. Rev. 40, 4–12. 10.1097/JES.0b013e31823b5f13
    1. Reimers K., Reimers C. D., Wagner S., Paetzke I., Pongratz D. E. (1993). Skeletal muscle sonography: a correlative study of echogenicity and morphology. J. Ultrasound Med. 12, 73–77. 10.7863/jum.1993.12.2.73
    1. Roden M. (2005). Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. Int. J. Obes. 29(Suppl. 2), S111–S115. 10.1038/sj.ijo.0803102
    1. Rogers M. A., Evans W. J. (1993). Changes in skeletal muscle with aging: effects of exercise training. Exerc. Sport Sci. Rev. 21, 65–102. 10.1249/00003677-199301000-00003
    1. Ryan A. S., Buscemi A., Forrester L., Hafer-Macko C. E., Ivey F. M. (2011). Atrophy and intramuscular fat in specific muscles of the thigh: associated weakness and hyperinsulinemia in stroke survivors. Neurorehabil. Neural Repair 25, 865–872. 10.1177/1545968311408920
    1. Savage D. B., Petersen K. F., Shulman G. I. (2007). Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol. Rev. 87, 507–520. 10.1152/physrev.00024.2006
    1. Scanlon T. C., Fragala M. S., Stout J. R., Emerson N. S., Beyer K. S., Oliveira L. P., et al. . (2014). Muscle architecture and strength: adaptations to short-term resistance training in older adults. Muscle Nerve 49, 584–592. 10.1002/mus.23969
    1. Scelsi R., Marchetti C., Poggi P. (1980). Histochemical and ultrastructural aspects of m. vastus lateralis in sedentary old people (age 65–89 years). Acta Neuropathol. 51, 99–105. 10.1007/BF00690450
    1. Schrager M. A., Metter E. J., Simonsick E., Ble A., Bandinelli S., Lauretani F., et al. . (2007). Sarcopenic obesity and inflammation in the InCHIANTI study. J. Appl. Physiol. 102, 919–925. 10.1152/japplphysiol.00627.2006
    1. Scott D., Blizzard L., Fell J., Ding C., Winzenberg T., Jones G. (2010). A prospective study of the associations between 25-hydroxy-vitamin D, sarcopenia progression and physical activity in older adults: Vitamin D, sarcopenia and physical activity. Clin. Endocrinol. 73, 581–587. 10.1111/j.1365-2265.2010.03858.x
    1. Scott J. M., Martin D. S., Ploutz-Snyder R., Caine T., Matz T., Arzeno N. M., et al. . (2012). Reliability and validity of panoramic ultrasound for muscle quantification. Ultrasound Med. Biol. 38, 1656–1661. 10.1016/j.ultrasmedbio.2012.04.018
    1. Sions J. M., Velasco T. O., Teyhen D. S., Hicks G. E. (2014). Ultrasound imaging: intraexaminer and interexaminer reliability for multifidus muscle thickness assessment in adults aged 60 to 85 years versus younger adults. J. Orthop. Sports Phys. Ther. 44, 425–434. 10.2519/jospt.2014.4584
    1. Sipilä S., Suominen H. (1993). Muscle ultrasonography and computed tomography in elderly trained and untrained women. Muscle Nerve 16, 294–300. 10.1002/mus.880160309
    1. Smith U. (2015). Abdominal obesity: a marker of ectopic fat accumulation. J. Clin. Invest. 125, 1790–1792. 10.1172/JCI81507
    1. Straight C. R., Brady A. O., Evans E. (2015). Sex-specific relationships of physical activity, body composition, and muscle quality with lower-extremity physical function in older men and women. Menopause 22, 297–303. 10.1097/GME.0000000000000313
    1. Studenski S. A., Peters K. W., Alley D. E., Cawthon P. M., McLean R. R., Harris T. B., et al. . (2014). The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J. Gerontol. A Biol. Sci. Med. Sci. 69, 547–558. 10.1093/gerona/glu010
    1. Summers S. A., Nelson D. H. (2005). A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing's syndrome. Diabetes 54, 591–602. 10.2337/diabetes.54.3.591
    1. Sun S. Y., Anthony B. W. (2012). Freehand 3D ultrasound volume imaging using a miniature-mobile 6-DOF camera tracking system, in Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium (IEEE: ), 1084–1087.
    1. Sun S. Y., Gilbertson M., Anthony B. W. (2013a). 6-DOF probe tracking via skin mapping for freehand 3D ultrasound, in Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium (IEEE: ), 780–783.
    1. Sun S. Y., Gilbertson M., Anthony B. W. (2013b). Computer-guided ultrasound probe realignment by optical tracking, in Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium (IEEE: ), 21–24.
    1. Sun S. Y., Gilbertson M., Anthony B. W. (2014). Probe localization for freehand 3D ultrasound by tracking skin features, in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 Lecture Notes in Computer Science, eds Golland P., Hata N., Barillot C., Hornegger J., Howe R. (Boston, MA: Springer International Publishing; ), 365–372. Available online at: (Accessed June 25, 2016).
    1. Takai Y., Ohta M., Akagi R., Kanehisa H., Kawakami Y., Fukunaga T. (2009). Sit-to-stand test to evaluate knee extensor muscle size and strength in the elderly: a novel approach. J. Physiol. Anthropol. 28, 123–128. 10.2114/jpa2.28.123
    1. Tardif N., Salles J., Guillet C., Tordjman J., Reggio S., Landrier J.-F., et al. . (2014). Muscle ectopic fat deposition contributes to anabolic resistance in obese sarcopenic old rats through eIF2α activation. Aging Cell 13, 1001–1011. 10.1111/acel.12263
    1. Tchernof A., Després J.-P. (2013). Pathophysiology of human visceral obesity: an update. Physiol. Rev. 93, 359–404. 10.1152/physrev.00033.2011
    1. Tchkonia T., Morbeck D. E., Von Zglinicki T., Van Deursen J., Lustgarten J., Scrable H., et al. . (2010). Fat tissue, aging, and cellular senescence. Aging Cell 9, 667–684. 10.1111/j.1474-9726.2010.00608.x
    1. Therkelsen K. E., Pedley A., Speliotes E. K., Massaro J. M., Murabito J., Hoffmann U., et al. . (2013). Intramuscular fat and associations with metabolic risk factors in the Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 33, 863–870. 10.1161/ATVBAHA.112.301009
    1. Thrun S., Leonard J. J. (2008). Simultaneous localization and mapping, in Springer Handbook of Robotics, eds Prof B. S., Prof O. K. (Germany: Springer Berlin Heidelberg; ), 871–889. Available online at: (Accessed June 25, 2016).
    1. Tomonaga M. (1977). Histochemical and ultrastructural changes in senile human skeletal muscle. J. Am. Geriatr. Soc. 25, 125–131. 10.1111/j.1532-5415.1977.tb00274.x
    1. Townsend J. R., Hoffman J. R., Fragala M. S., Oliveira L. P., Jajtner A. R., Fukuda D. H., et al. . (2016). A microbiopsy method for immunohistological and morphological analysis: a pilot study. Med. Sci. Sports Exerc. 48, 331–335. 10.1249/MSS.0000000000000772
    1. Trayhurn P., Drevon C. A., Eckel J. (2011). Secreted proteins from adipose tissue and skeletal muscle - adipokines, myokines and adipose/muscle cross-talk. Arch. Physiol. Biochem. 117, 47–56. 10.3109/13813455.2010.535835
    1. Triplett W. T., Baligand C., Forbes S. C., Willcocks R. J., Lott D. J., DeVos S., et al. . (2014). Chemical shift-based MRI to measure fat fractions in dystrophic skeletal muscle. Magn. Reson. Med. 72, 8–19. 10.1002/mrm.24917
    1. Turcotte L. P., Fisher J. S. (2008). Skeletal muscle insulin resistance: roles of fatty acid metabolism and exercise. Phys. Ther. 88, 1279–1296. 10.2522/ptj.20080018
    1. Tuttle L. J., Sinacore D. R., Mueller M. J. (2012). Intermuscular adipose tissue is muscle specific and associated with poor functional performance. J. Aging Res. 2012:172957. 10.1155/2012/172957
    1. Verdijk L. B., Snijders T., Beelen M., Savelberg H. H. C. M., Meijer K., Kuipers H., et al. . (2010). Characteristics of muscle fiber type are predictive of skeletal muscle mass and strength in elderly men. J. Am. Geriatr. Soc. 58, 2069–2075. 10.1111/j.1532-5415.2010.03150.x
    1. Vettor R., Milan G., Franzin C., Sanna M., De Coppi P., Rizzuto R., et al. . (2009). The origin of intermuscular adipose tissue and its pathophysiological implications. Am. J. Physiol. Endocrinol. Metab. 297, E987–E998. 10.1152/ajpendo.00229.2009
    1. Visser M., Goodpaster B. H., Kritchevsky S. B., Newman A. B., Nevitt M., Rubin S. M., et al. . (2005). Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J. Gerontol. A Biol. Sci. Med. Sci. 60, 324–333. 10.1093/gerona/60.3.324
    1. Visser M., Kritchevsky S. B., Goodpaster B. H., Newman A. B., Nevitt M., Stamm E., et al. . (2002). Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. J. Am. Geriatr. Soc. 50, 897–904. 10.1046/j.1532-5415.2002.50217.x
    1. Watanabe Y., Yamada Y., Fukumoto Y., Ishihara T., Yokoyama K., Yoshida T., et al. . (2013). Echo intensity obtained from ultrasonography images reflecting muscle strength in elderly men. Clin. Interv. Aging 8, 993–998. 10.2147/CIA.S47263
    1. Wijsman C. A., van Opstal A. M., Kan H. E., Maier A. B., Westendorp R. G. J., Slagboom P. E., et al. . (2012). Proton magnetic resonance spectroscopy shows lower intramyocellular lipid accumulation in middle-aged subjects predisposed to familial longevity. Am. J. Physiol. Endocrinol. Metab. 302, E344–E348. 10.1152/ajpendo.00455.2011
    1. Willcocks R. J., Arpan I. A., Forbes S. C., Lott D. J., Senesac C. R., Senesac E., et al. . (2014). Longitudinal measurements of MRI-T2 in boys with Duchenne muscular dystrophy: effects of age and disease progression. Neuromuscul. Disord. 24, 393–401. 10.1016/j.nmd.2013.12.012
    1. Yim J.-E., Heshka S., Albu J., Heymsfield S., Kuznia P., Harris T., et al. . (2007). Intermuscular adipose tissue rivals visceral adipose tissue in independent associations with cardiovascular risk. Int. J. Obes. 31, 1400–1405. 10.1038/sj.ijo.0803621
    1. Yoshida D., Ninomiya T., Doi Y., Hata J., Fukuhara M., Ikeda F., et al. . (2012a). Prevalence and causes of functional disability in an elderly general population of Japanese: the Hisayama study. J. Epidemiol. 22, 222–229. 10.2188/jea.JE20110083
    1. Yoshida Y., Marcus R. L., Lastayo P. C. (2012b). Intramuscular adipose tissue and central activation in older adults. Muscle Nerve 46, 813–816. 10.1002/mus.23506
    1. Zaidman C. M., Holland M. R., Hughes M. S. (2012). Quantitative ultrasound of skeletal muscle: reliable measurements of calibrated muscle backscatter from different ultrasound systems. Ultrasound Med. Biol. 38, 1618–1625. 10.1016/j.ultrasmedbio.2012.04.020
    1. Zaidman C. M., Holland M. R., Anderson C. C., Pestronk A. (2008). Calibrated quantitative ultrasound imaging of skeletal muscle using backscatter analysis. Muscle Nerve 38, 893–898. 10.1002/mus.21052
    1. Zaidman C. M., Wu J. S., Wilder S., Darras B. T., Rutkove S. B. (2014). Minimal training is required to reliably perform quantitative ultrasound of muscle. Muscle Nerve 50, 124–128. 10.1002/mus.24117
    1. Zoico E., Rossi A., Di Francesco V., Sepe A., Olioso D., Pizzini F., et al. . (2010). Adipose tissue infiltration in skeletal muscle of healthy elderly men: relationships with body composition, insulin resistance, and inflammation at the systemic and tissue level. J. Gerontol. A Biol. Sci. Med. Sci. 65, 295–299. 10.1093/gerona/glp155
    1. Zuo L., Best T. M., Roberts W. J., Diaz P. T., Wagner P. D. (2015). Characterization of reactive oxygen species in diaphragm. Acta Physiol. 213, 700–710. 10.1111/apha.12410
    1. Zuo L., Hallman A. H., Yousif M. K., Chien M. T. (2012). Oxidative stress, respiratory muscle dysfunction, and potential therapeutics in chronic obstructive pulmonary disease. Front. Biol. 7, 506–513. 10.1007/s11515-012-1251-x
    1. Zuo L., Shiah A., Roberts W. J., Chien M. T., Wagner P. D., Hogan M. C. (2013). Low PO2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers. AJP Regul. Integr. Comp. Physiol. 304, R1009–R1016. 10.1152/ajpregu.00563.2012

Source: PubMed

3
Iratkozz fel