Neuroplasticity induced by general anaesthesia: study protocol for a randomised cross-over clinical trial exploring the effects of sevoflurane and propofol on the brain - A 3-T magnetic resonance imaging study of healthy volunteers

Signe Sloth Madsen, Kirsten Møller, Karsten Skovgaard Olsen, Mark Bitsch Vestergaard, Ulrich Lindberg, Henrik Bo Wiberg Larsson, Johan Mårtensson, Mads U Werner, Sofia Alexandra Gaspar Santos, Mohammad Sohail Asghar, Signe Sloth Madsen, Kirsten Møller, Karsten Skovgaard Olsen, Mark Bitsch Vestergaard, Ulrich Lindberg, Henrik Bo Wiberg Larsson, Johan Mårtensson, Mads U Werner, Sofia Alexandra Gaspar Santos, Mohammad Sohail Asghar

Abstract

Background: Although used extensively worldwide, the effects of general anaesthesia on the human brain remain largely elusive. Moreover, general anaesthesia may contribute to serious conditions or adverse events such as postoperative cognitive dysfunction and delirium. To understand the basic mechanisms of general anaesthesia, this project aims to study and compare possible de novo neuroplastic changes induced by two commonly used types of general anaesthesia, i.e. inhalation anaesthesia by sevoflurane and intravenously administered anaesthesia by propofol. In addition, we wish to to explore possible associations between neuroplastic changes, neuropsychological adverse effects and subjective changes in fatigue and well-being.

Methods: This is a randomised, participant- and assessor-blinded, cross-over clinical trial. Thirty healthy volunteers (male:female ratio 1:1) will be randomised to general anaesthesia by either sevoflurane or propofol. Multimodal magnetic resonance imaging (MRI) of the brain will be performed before and after general anaesthesia and repeated after 1 and 8 days. Each magnetic resonance imaging session will be accompanied by cognitive testing and questionnaires on fatigue and well-being. After a wash-out period of 4 weeks, the volunteers will receive the other type of anaesthetic (sevoflurane or propofol), followed by the same series of tests. Primary outcomes: changes in T1-weighted 3D anatomy and diffusion tensor imaging.

Secondary outcomes: changes in resting-state functional magnetic resonance imaging, fatigue, well-being, cognitive function, correlations between magnetic resonance imaging findings and the clinical outcomes (questionnaires and cognitive function). Exploratory outcomes: changes in cerebral perfusion and oxygen metabolism, lactate, and response to visual stimuli.

Discussion: To the best of our knowledge, this is the most extensive and advanced series of studies with head-to-head comparison of two widely used methods for general anaesthesia. Recruitment was initiated in September 2019.

Trial registration: Approved by the Research Ethics Committee in the Capital Region of Denmark, ref. H-18028925 (6 September 2018). EudraCT and Danish Medicines Agency: 2018-001252-35 (23 March 2018). www.clinicaltrials.gov , ID: NCT04125121 . Retrospectively registered on 10 October 2019.

Keywords: Cognitive; Consciousness; Fatigue; General anaesthesia; Healthy volunteers; Magnetic resonance imaging; Neuroplastic changes; Neuroplasticity; Propofol; Sevoflurane.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow chart for study sessions. Study session 2 mirrors session 1, the only difference being the type of GA on the intervention day (sevoflurane vs. propofol)
Fig. 2
Fig. 2
Schematic presentation of the study elements

References

    1. Bigelow HJ. Insensibility during surgical operations produced by inhalation. Boston Med Surg J. 1846;35(16):309–317.
    1. Regionernes Kliniske Kvalitetsudviklingsprogram DAD . Dansk Anæstesi Database National Årsrapport 2016 [Annual report] 2016. p. 64.
    1. Miller G. Miller’s anesthesia. 2015 ed. Philadelphia: Elsevier Saunders; 2015.
    1. Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics. N Engl J Med. 2003;348(21):2110–2124.
    1. Ishizawa Y. Mechanisms of anesthetic actions and the brain. J Anesth. 2007;21(2):187–199.
    1. Vanlersberghe C, Camu F. Propofol. Handb Exp Pharmacol. 2008;182:227–252.
    1. Dunnet JM, Prys-Roberts C, Holland DE, Browne BL. Propofol infusion and the suppression of consciousness: dose requirements to induce loss of consciousness and to suppress response to noxious and non-noxious stimuli. Br J Anaesth. 1994;72(1):29–34.
    1. Forrest FC, Tooley MA, Saunders PR, Prys-Roberts C. Propofol infusion and the suppression of consciousness: the EEG and dose requirements. Br J Anaesth. 1994;72(1):35–41.
    1. Casati A, Fanelli G, Casaletti E, Colnaghi E, Cedrati V, Torri G. Clinical assessment of target-controlled infusion of propofol during monitored anesthesia care. Can J Anaesth. 1999;46(3):235–239.
    1. Sukhotinsky I, Zalkind V, Lu J, Hopkins DA, Saper CB, Devor M. Neural pathways associated with loss of consciousness caused by intracerebral microinjection of GABA A-active anesthetics. Eur J Neurosci. 2007;25(5):1417–1436.
    1. Miller G. What is the biological basis of consciousness? Science. 2005;309(5731):79.
    1. Schneider G, Kochs EF. The search for structures and mechanisms controlling anesthesia-induced unconsciousness. Anesthesiology. 2007;107(2):195–198.
    1. Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N Engl J Med. 2010;363(27):2638–2650.
    1. Herling SF, Dreijer B, Wrist Lam G, Thomsen T, Moller AM. Total intravenous anaesthesia versus inhalational anaesthesia for adults undergoing transabdominal robotic assisted laparoscopic surgery. Cochrane Database Syst Rev. 2017;4:CD011387.
    1. Steinmetz J, Christensen KB, Lund T, Lohse N, Rasmussen LS, Group I Long-term consequences of postoperative cognitive dysfunction. Anesthesiology. 2009;110(3):548–555.
    1. Witlox J, Eurelings LS, de Jonghe JF, Kalisvaart KJ, Eikelenboom P, van Gool WA. Delirium in elderly patients and the risk of postdischarge mortality, institutionalization, and dementia: a meta-analysis. JAMA. 2010;304(4):443–451.
    1. Inouye SK, Marcantonio ER, Kosar CM, Tommet D, Schmitt EM, Travison TG, et al. The short-term and long-term relationship between delirium and cognitive trajectory in older surgical patients. Alzheimers Dement. 2016;12(7):766–775.
    1. Jevtovic-Todorovic V, Absalom AR, Blomgren K, Brambrink A, Crosby G, Culley DJ, et al. Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the BJA Salzburg Seminar. Br J Anaesth. 2013;111(2):143–151.
    1. Strom C, Rasmussen LS, Sieber FE. Should general anaesthesia be avoided in the elderly? Anaesthesia. 2014;69(Suppl 1):35–44.
    1. Miller D, Lewis SR, Pritchard MW, Schofield-Robinson OJ, Shelton CL, Alderson P, et al. Intravenous versus inhalational maintenance of anaesthesia for postoperative cognitive outcomes in elderly people undergoing non-cardiac surgery. Cochrane Database Syst Rev. 2018;8:CD012317.
    1. Davis N, Lee M, Lin AY, Lynch L, Monteleone M, Falzon L, et al. Postoperative cognitive function following general versus regional anesthesia: a systematic review. J Neurosurg Anesthesiol. 2014;26(4):369–376.
    1. Lindqvist M, Schening A, Granstrom A, Bjorne H, Jakobsson JG. Cognitive recovery after ambulatory anaesthesia based on desflurane or propofol: a prospective randomised study. Acta Anaesthesiol Scand. 2014;58(9):1111–1120.
    1. Larsen B, Seitz A, Larsen R. Recovery of cognitive function after remifentanil-propofol anesthesia: a comparison with desflurane and sevoflurane anesthesia. Anesth Analg. 2000;90(1):168–174.
    1. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage. 2000;11(6 Pt 1):805–821.
    1. Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990;14(1):68–78.
    1. Brooks J, Tracey I. From nociception to pain perception: imaging the spinal and supraspinal pathways. J Anat. 2005;207(1):19–33.
    1. van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010;20(8):519–534.
    1. Pryor KO, Root JC, Mehta M, Stern E, Pan H, Veselis RA, et al. Effect of propofol on the medial temporal lobe emotional memory system: a functional magnetic resonance imaging study in human subjects. Br J Anaesth. 2015;115(Suppl 1):i104–ii13.
    1. Quan X, Yi J, Ye TH, Tian SY, Zou L, Yu XR, et al. Propofol and memory: a study using a process dissociation procedure and functional magnetic resonance imaging. Anaesthesia. 2013;68(4):391–399.
    1. Mhuircheartaigh RN, Rosenorn-Lanng D, Wise R, Jbabdi S, Rogers R, Tracey I. Cortical and subcortical connectivity changes during decreasing levels of consciousness in humans: a functional magnetic resonance imaging study using propofol. J Neurosci. 2010;30(27):9095–9102.
    1. Ni Mhuircheartaigh R, Warnaby C, Rogers R, Jbabdi S, Tracey I. Slow-wave activity saturation and thalamocortical isolation during propofol anesthesia in humans. Sci Transl Med. 2013;5(208):208ra148.
    1. Bonhomme V, Fiset P, Meuret P, Backman S, Plourde G, Paus T, et al. Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation: a positron emission tomography study. J Neurophysiol. 2001;85(3):1299–1308.
    1. Veselis RA, Feshchenko VA, Reinsel RA, Dnistrian AM, Beattie B, Akhurst TJ. Thiopental and propofol affect different regions of the brain at similar pharmacologic effects. Anesth Analg. 2004;99(2):399–408.
    1. Hofbauer RK, Fiset P, Plourde G, Backman SB, Bushnell MC. Dose-dependent effects of propofol on the central processing of thermal pain. Anesthesiology. 2004;100(2):386–394.
    1. Sun X, Zhang H, Gao C, Zhang G, Xu L, Lv M, et al. Imaging the effects of propofol on human cerebral glucose metabolism using positron emission tomography. J Int Med Res. 2008;36(6):1305–1310.
    1. Schlunzen L, Juul N, Hansen KV, Cold GE. Regional cerebral blood flow and glucose metabolism during propofol anaesthesia in healthy subjects studied with positron emission tomography. Acta Anaesthesiol Scand. 2012;56(2):248–255.
    1. Ramani R, Qiu M, Constable RT. Sevoflurane 0.25 MAC preferentially affects higher order association areas: a functional magnetic resonance imaging study in volunteers. Anesth Analg. 2007;105(3):648–655.
    1. Qiu M, Ramani R, Swetye M, Rajeevan N, Constable RT. Anesthetic effects on regional CBF, BOLD, and the coupling between task-induced changes in CBF and BOLD: an fMRI study in normal human subjects. Magn Reson Med. 2008;60(4):987–996.
    1. Lorenz IH, Kolbitsch C, Hormann C, Schocke M, Felber S, Zschiegner F, et al. Subanesthetic concentration of sevoflurane increases regional cerebral blood flow more, but regional cerebral blood volume less, than subanesthetic concentration of isoflurane in human volunteers. J Neurosurg Anesthesiol. 2001;13(4):288–295.
    1. Peltier SJ, Kerssens C, Hamann SB, Sebel PS, Byas-Smith M, Hu X. Functional connectivity changes with concentration of sevoflurane anesthesia. Neuroreport. 2005;16(3):285–288.
    1. Kaisti KK, Langsjo JW, Aalto S, Oikonen V, Sipila H, Teras M, et al. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology. 2003;99(3):603–613.
    1. Smets EM, Garssen B, Bonke B, De Haes JC. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J Psychosom Res. 1995;39(3):315–325.
    1. Kleif J, Edwards HM, Sort R, Vilandt J, Gogenur I. Translation and validation of the Danish version of the postoperative Quality of Recovery score QoR-15. Acta Anaesthesiol Scand. 2015;59(7):912–920.
    1. American Society of Anesthesiologists. ASA Physical Status Classification System [Classification system]. Online: American Society of Anesthesiologists; 2014 [updated 15 October 2014]. 15 October 2014. Available from: . Accessed 1 Sept 2018.
    1. Smith I, Kranke P, Murat I, Smith A, O’Sullivan G, Soreide E, et al. Perioperative fasting in adults and children: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol. 2011;28(8):556–569.
    1. Struys MM, Sahinovic M, Lichtenbelt BJ, Vereecke HE, Absalom AR. Optimizing intravenous drug administration by applying pharmacokinetic/pharmacodynamic concepts. Br J Anaesth. 2011;107(1):38–47.
    1. Sahinovic MM, Absalom AR, Struys MM. Administration and monitoring of intravenous anesthetics. Curr Opin Anaesthesiol. 2010;23(6):734–740.
    1. Masui K, Upton RN, Doufas AG, Coetzee JF, Kazama T, Mortier EP, et al. The performance of compartmental and physiologically based recirculatory pharmacokinetic models for propofol: a comparison using bolus, continuous, and target-controlled infusion data. Anesth Analg. 2010;111(2):368–379.
    1. Medicin DSfAoI. DASAIMS recommendation for observation after anaesthesia [Recommendation]: Online: Dansk Selskab for Anæstesiologi og Intensiv Medicin; 2015. [updated November 2015]. Available from: . Accessed 14 May 2019.
    1. (DASAIM) DSfAoIM. DASAIM’S rekommandation for udskrivningskriterier fra anæstesiologisk observationsafsnit. [Pdf available from public website]. DASAIM; 2019 [updated 2019 (update 2018, approved 2019). 2018: [National recommendation regarding criteria for discharge from post-operative and anaesthesia care unit]. Available from: . Accessed 14 May 2019.
    1. American Society of Anesthesiologists Task Force on Postanesthetic Care Practice guidelines for postanesthetic care: a report by the American Society of Anesthesiologists Task Force on Postanesthetic Care. Anesthesiology. 2002;96(3):742–752.
    1. Gronwall DM. Paced auditory serial-addition task: a measure of recovery from concussion. Percept Mot Skills. 1977;44(2):367–373.
    1. Good Clinical Practice Unit 2019. Available from: . Accessed 22 Oct 2019.
    1. Bigler ED, Blatter DD, Anderson CV, Johnson SC, Gale SD, Hopkins RO, et al. Hippocampal volume in normal aging and traumatic brain injury. AJNR Am J Neuroradiol. 1997;18(1):11–23.
    1. Chen MH, Liao Y, Rong PF, Hu R, Lin GX, Ouyang W. Hippocampal volume reduction in elderly patients at risk for postoperative cognitive dysfunction. J Anesth. 2013;27(4):487–492.
    1. Sagi Y, Tavor I, Hofstetter S, Tzur-Moryosef S, Blumenfeld-Katzir T, Assaf Y. Learning in the fast lane: new insights into neuroplasticity. Neuron. 2012;73(6):1195–1203.
    1. Editors ICoMJ. Recommendations for the conduct, reporting, editing, and publication of scholarly work in medical journals [Web page, recommendation]. Online: Annals of Internal Medicine/American College of Physicians; 1978 (updated 2017). Available from: . Accessed 20 Mar 2018.
    1. Steinmetz LRaJ. Anæstesi. 4 ed. Denmark: FADL’s Forlag; 2014 24. marts 2014.

Source: PubMed

3
Iratkozz fel