Effects of daily 24-gram doses of rice or whey protein on resistance training adaptations in trained males

Jessica M Moon, Kayla M Ratliff, Julia C Blumkaitis, Patrick S Harty, Hannah A Zabriskie, Richard A Stecker, Brad S Currier, Andrew R Jagim, Ralf Jäger, Martin Purpura, Chad M Kerksick, Jessica M Moon, Kayla M Ratliff, Julia C Blumkaitis, Patrick S Harty, Hannah A Zabriskie, Richard A Stecker, Brad S Currier, Andrew R Jagim, Ralf Jäger, Martin Purpura, Chad M Kerksick

Abstract

Background: Large (48-g), isonitrogenous doses of rice and whey protein have previously been shown to stimulate similar adaptations to resistance training, but the impact of consuming smaller doses has yet to be compared. We evaluated the ability of 24-g doses of rice or whey protein concentrate to augment adaptations following 8 weeks of resistance training.

Methods: Healthy resistance-trained males (n = 24, 32.8 ± 6.7 years, 179.3 ± 8.5 cm, 87.4 ± 8.5 kg, 27.2 ± 1.9 kg/m2, 27.8 ± 6.0% fat) were randomly assigned and matched according to fat-free mass to consume 24-g doses of rice (n = 12, Growing Naturals, LLC) or whey (n = 12, NutraBio Labs, Inc.) protein concentrate for 8 weeks while completing a standardized resistance training program. Body composition (DXA), muscular strength (one-repetition maximum [1RM]) and endurance (repetitions to fatigue [RTF] at 80% 1RM) using bench press (BP) and leg press (LP) exercises along with anaerobic capacity (Wingate) were assessed before and after the intervention. Subjects were asked to maintain regular dietary habits and record dietary intake every 2 weeks. Outcomes were assessed using 2 × 2 mixed (group x time) factorial ANOVA with repeated measures on time and independent samples t-tests using the change scores from baseline. A p-value of 0.05 and 95% confidence intervals on the changes between groups were used to determine outcomes.

Results: No baseline differences (p > 0.05) were found for key body composition and performance outcomes. No changes (p > 0.05) in dietary status occurred within or between groups (34 ± 4 kcal/kg/day, 3.7 ± 0.77 g/kg/day, 1.31 ± 0.28 g/kg/day, 1.87 ± 0.23 g/kg/day) throughout the study for daily relative energy (34 ± 4 kcals/kg/day), carbohydrate (3.7 ± 0.77 g/kg/day), fat (1.31 ± 0.28 g/kg/day), and protein (1.87 ± 0.23 g/kg/day) intake. Significant main effects for time were revealed for body mass (p = 0.02), total body water (p = 0.01), lean mass (p = 0.008), fat-free mass (p = 0.007), BP 1RM (p = 0.02), BP volume (p = 0.04), and LP 1RM (p = 0.01). Changes between groups were similar for body mass (- 0.88, 2.03 kg, p = 0.42), fat-free mass (- 0.68, 1.99 kg, p = 0.32), lean mass (- 0.73, 1.91 kg, p = 0.37), fat mass (- 0.48, 1.02 kg, p = 0.46), and % fat (- 0.63, 0.71%, p = 0.90). No significant between group differences were seen for BP 1RM (- 13.8, 7.1 kg, p = 0.51), LP 1RM (- 38.8, 49.6 kg, p = 0.80), BP RTF (- 2.02, 0.35 reps, p = 0.16), LP RTF (- 1.7, 3.3 reps, p = 0.50), and Wingate peak power (- 72.5, 53.4 watts, p = 0.76) following the eight-week supplementation period.

Conclusions: Eight weeks of daily isonitrogenous 24-g doses of rice or whey protein in combination with an eight-week resistance training program led to similar changes in body composition and performance outcomes. Retroactively registered on as NCT04411173 .

Keywords: Body composition; Efficacy; Endurance; Fat-free mass; Performance; Plant proteins; Protein isolates; Protein source; Rice; Strength; Supplementation; Whey.

Conflict of interest statement

RJ is an inventor of patent WO2014138305 (US 9,820,504) and has not been involved in the data collection and analysis or writing the manuscript. All other authors declare no competing interests. All other authors declare no conflicts of interest.

Figures

Fig. 1
Fig. 1
Research Design Overview
Fig. 2
Fig. 2
CONSORT diagram
Fig. 3
Fig. 3
(Sub-Panel a & b): DXA fat-free mass (in kilograms) in rice and whey protein supplemented groups. Panel a: Raw data (Rice = 0.05 ± 4.8% change; Whey = 1.5 ± 4.5% change); Panel b: Individual response data. All data is presented as means ± SD. * = Different from within-group week 0 value
Fig. 4
Fig. 4
(Sub-Panel a & b): Bench-press one-repetition maximum (1RM) in rice and whey protein supplemented groups. Panel a: Raw data (Rice = 3.9 ± 4.9% change; Whey = 2.4 ± 5.0% change); Panel b: Individual response data. All data is presented as means ± SD. * = Different from within-group week 0 value

References

    1. Trumbo P, Schlicker S, Yates AA, Poos M. Food, and nutrition Board of the Institute of medicine TNA. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102(11):1621–1630. doi: 10.1016/S0002-8223(02)90346-9.
    1. Thomas DT, Erdman KA, Burke LM. Position of the academy of nutrition and dietetics, dietitians of Canada, and the american college of sports medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016;116(3):501–528. doi: 10.1016/j.jand.2015.12.006.
    1. Jager R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, Purpura M, Ziegenfuss TN, Ferrando AA, Arent SM, Smith-Ryan AE, Stout JR, Arciero PJ, Ormsbee MJ, Taylor LW, Wilborn CD, Kalman DS, Kreider RB, Willoughby DS, Hoffman JR, Krzykowski JL, Antonio J. International society of sports nutrition position stand: Protein and exercise. J Int Soc Sports Nutr. 2017;14:20. doi: 10.1186/s12970-017-0177-8.
    1. Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Phys. 1995;268(3 Pt 1):E514–E520.
    1. Trommelen J, Betz MW, Van Loon LJC. The muscle protein synthetic response to meal ingestion following resistance-type exercise. Sports Med. 2019;49(2):185–197. doi: 10.1007/s40279-019-01053-5.
    1. Moore DR. Maximizing post-exercise anabolism: The case for relative protein intakes. Front Nutr. 2019;6:147. doi: 10.3389/fnut.2019.00147.
    1. Tipton KD, Gurkin BE, Matin S, Wolfe RR. Nonessential amino acids are not necessary to stimulate net muscle protein synthesis in healthy volunteers. J Nutr Biochem. 1999;10(2):89–95. doi: 10.1016/S0955-2863(98)00087-4.
    1. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr. 2003;78(2):250–258. doi: 10.1093/ajcn/78.2.250.
    1. Gorissen SHM, Crombag JJR, Senden JMG, WaH W, Bierau J, Verdijk LB, LJC VL. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids. 2018;50(12):1685–1695. doi: 10.1007/s00726-018-2640-5.
    1. Churchward-Venne TA, Burd NA, Mitchell CJ, West DW, Philp A, Marcotte GR, Baker SK, Baar K, Phillips SM. Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. J Physiol. 2012;590(Pt 11):2751–2765. doi: 10.1113/jphysiol.2012.228833.
    1. Norton LE, Layman DK, Bunpo P, Anthony TG, Brana DV, Garlick PJ. The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats. J Nutr. 2009;139(6):1103–1109. doi: 10.3945/jn.108.103853.
    1. Joy JM, Lowery RP, Wilson JM, Purpura M, De Souza EO, Wilson SM, Kalman DS, Dudeck JE, Jager R. The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance. Nutrition J. 2013;12:86. doi: 10.1186/1475-2891-12-86.
    1. Escobar KA, Mclain TA, Kerksick CM. Protein applications in sports nutrition - part ii: timing and protein patterns, fat-free mass accretion, and fat loss. Strength Cond J. 2015;37(3):22–34. doi: 10.1519/SSC.0000000000000138.
    1. Mclain TA, Escobar KA, Kerksick CM. Protein applications in sports nutrition - part i: requirements, quality, source, and optimal dose. Strength Cond J. 2015;37(2):61–71. doi: 10.1519/SSC.0000000000000128.
    1. Trommelen J, Kouw IWK, Holwerda AM, Snijders T, Halson SL, Rollo I, Verdijk LB, Van Loon LJC. Presleep dietary protein-derived amino acids are incorporated in myofibrillar protein during postexercise overnight recovery. Am J Physiol Endocrinol Metab. 2018;314(5):E457–E467. doi: 10.1152/ajpendo.00273.2016.
    1. Snijders T, Res PT, Smeets JS, Van Vliet S, Van Kranenburg J, Maase K, Kies AK, Verdijk LB, Van Loon LJ. Protein ingestion before sleep increases muscle mass and strength gains during prolonged resistance-type exercise training in healthy young men. J Nutr. 2015;145(6):1178–1184. doi: 10.3945/jn.114.208371.
    1. Purpura M, Lowery RP, Joy JM, De Souza EO, Kalman D. A comparison of blood amino acid concentrations following ingestion of rice and whey protein isolate: a double-blind, crossover study. J Nutr Health Sci. 2014;1(3):306.
    1. Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jager R, Collins R, Cooke M, Davis JN, Galvan E, Greenwood M, Lowery LM, Wildman R, Antonio J, Kreider RB. Issn exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr. 2018;15(1):38. doi: 10.1186/s12970-018-0242-y.
    1. Moon JR, Tobkin SE, Roberts MD, Dalbo VJ, Kerksick CM, Bemben MG, Cramer JT, Stout JR. Total body water estimations in healthy men and women using bioimpedance spectroscopy: A deuterium oxide comparison. Nutr Metab (Lond) 2008;5:7. doi: 10.1186/1743-7075-5-7.
    1. Kerksick CM, Wilborn CD, Campbell BI, Roberts MD, Rasmussen CJ, Greenwood M, Kreider RB. Early-phase adaptations to a split-body, linear periodization resistance training program in college-aged and middle-aged men. J Strength Cond Res. 2009;23(3):962–971. doi: 10.1519/JSC.0b013e3181a00baf.
    1. Mann JB, Thyfault JP, Ivey PA, Sayers SP. The effect of autoregulatory progressive resistance exercise vs. linear periodization on strength improvement in college athletes. J Strength Cond Res. 2010;24(7):1718–1723. doi: 10.1519/JSC.0b013e3181def4a6.
    1. Harris J and Benedict F: A biometric study of basal metabolism in man. Washington,: Carnegie Institution of Washington; 1919(Series Editor): Carnegie institution of washington publication.
    1. Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51(2):241–247. doi: 10.1093/ajcn/51.2.241.
    1. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Phys. 1997;273(1 Pt 1):E99–107.
    1. Tipton KD, Ferrando AA, Phillips SM, Doyle D, Jr, Wolfe RR. Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Phys. 1999;276(4 Pt 1):E628–E634.
    1. Babault N, Paizis C, Deley G, Guerin-Deremaux L, Saniez MH, Lefranc-Millot C, Allaert FA. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: A double-blind, randomized, placebo-controlled clinical trial vs. Whey protein. J Int Soc Sports Nutr. 2015;12(1):3. doi: 10.1186/s12970-014-0064-5.
    1. Hartman JW, Tang JE, Wilkinson SB, Tarnopolsky MA, Lawrence RL, Fullerton AV, Phillips SM. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am J Clin Nutr. 2007;86(2):373–381. doi: 10.1093/ajcn/86.2.373.
    1. Wilkinson SB, Tarnopolsky MA, Macdonald MJ, Macdonald JR, Armstrong D, Phillips SM. Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr. 2007;85(4):1031–1040. doi: 10.1093/ajcn/85.4.1031.
    1. Thomson RL, Brinkworth GD, Noakes M, Buckley JD. Muscle strength gains during resistance exercise training are attenuated with soy compared with dairy or usual protein intake in older adults: a randomized controlled trial. Clin Nutr. 2016;35(1):27–33. doi: 10.1016/j.clnu.2015.01.018.
    1. Candow DG, Burke NC, Smith-Palmer T, Burke DG. Effect of whey and soy protein supplementation combined with resistance training in young adults. Int J Sport Nutr Exerc Metab. 2006;16(3):233–244. doi: 10.1123/ijsnem.16.3.233.
    1. Maltais ML, Ladouceur JP, Dionne IJ. The effect of resistance training and different sources of postexercise protein supplementation on muscle mass and physical capacity in sarcopenic elderly men. J Strength Cond Res. 2016;30(6):1680–1687. doi: 10.1519/JSC.0000000000001255.
    1. Deane CS, Bass JJ, Crossland H, Phillips BE, Atherton PJ. Animal, plant, collagen and blended dietary proteins: Effects on musculoskeletal outcomes. Nutrients. 2020;12:9. doi: 10.3390/nu12092670.
    1. Drummond MJ, Dreyer HC, Fry CS, Glynn EL, Rasmussen BB. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mtorc1 signaling. J Appl Physiol. 2009;106(4):1374–1384. doi: 10.1152/japplphysiol.91397.2008.
    1. Drummond MJ, Rasmussen BB. Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Curr Opin Clin Nutr Metab Care. 2008;11(3):222–226. doi: 10.1097/MCO.0b013e3282fa17fb.
    1. Norton LE, Wilson GJ, Layman DK, Moulton CJ, Garlick PJ. Leucine content of dietary proteins is a determinant of postprandial skeletal muscle protein synthesis in adult rats. Nutr Metab (Lond) 2012;9(1):67. doi: 10.1186/1743-7075-9-67.
    1. Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, Prior T, Tarnopolsky MA, Phillips SM. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009;89(1):161–168. doi: 10.3945/ajcn.2008.26401.
    1. Phillips SM, Tipton KD, Ferrando AA, Wolfe RR. Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Phys. 1999;276(1 Pt 1):E118–E124.
    1. Kerksick CM, Rasmussen CJ, Lancaster SL, Magu B, Smith P, Melton C, Greenwood M, Almada AL, Earnest CP, Kreider RB. The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training. J Strength Cond Res. 2006;20(3):643–653.
    1. Brown EC, Disilvestro RA, Babaknia A, Devor ST. Soy versus whey protein bars: Effects on exercise training impact on lean body mass and antioxidant status. Nutrition J. 2004;3:22. doi: 10.1186/1475-2891-3-22.
    1. Cermak NM, Res PT, De Groot LC, Saris WH, Van Loon LJ. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012;96(6):1454–1464. doi: 10.3945/ajcn.112.037556.
    1. Kerksick CM, Rasmussen C, Lancaster S, Starks M, Smith P, Melton C, Greenwood M, Almada A, Kreider R. Impact of differing protein sources and a creatine containing nutritional formula after 12 weeks of resistance training. Nutrition. 2007;23(9):647–656. doi: 10.1016/j.nut.2007.06.015.
    1. Mazzetti SA, Kraemer WJ, Volek JS, Duncan ND, Ratamess NA, Gomez AL, Newton RU, Hakkinen K, Fleck SJ. The influence of direct supervision of resistance training on strength performance. Med Sci Sports Exerc. 2000;32(6):1175–1184. doi: 10.1097/00005768-200006000-00023.

Source: PubMed

3
Iratkozz fel