The concentration of β-carotene in human adipocytes, but not the whole-body adipocyte stores, is reduced in obesity

Martin Östh, Anita Öst, Preben Kjolhede, Peter Strålfors, Martin Östh, Anita Öst, Preben Kjolhede, Peter Strålfors

Abstract

We have examined the concentration of β-carotene in the fat of isolated abdominal subcutaneous adipocytes obtained from lean (BMI<23 kg/m²), non-obese with higher BMI (23≤BMI<28 kg/m²), obese (BMI≥28 kg/m²), and from a group of obese subjects with type 2 diabetes. The concentration of β-carotene was 50% lower in the adipocytes from the obese and obese/diabetic groups compared with the lean and non-obese groups. Interestingly, the total amount of β-carotene in the adipocyte stores of each subject was constant among all groups. Triacylglycerol constituted 92±1% (by weight) of the adipocyte lipids in the lean group and this was increased to 99±2% in the obese group with diabetes (p<0.05). The concentration of cholesteryl esters was in all cases <0.1 g per 100 g of total lipids, demonstrating that mature human adipocytes have negligible stores of cholesteryl ester. Our findings demonstrate that adipocyte concentrations of β-carotene are reduced in obese subjects. The lower concentrations in adipocytes from subjects with type 2 diabetes apparently reflect subjects obesity. Our finding that whole-body stores of β-carotene in adipocytes are constant raises new questions regarding what function it serves, as well as the mechanisms for maintaining constant levels in the face of varied adipose tissue mass among individuals over a period of time.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Concentration of TAG and β-carotene…
Figure 1. Concentration of TAG and β-carotene in lipid extracts of adipocytes.
The concentrations of TAG (A) and of β-carotene (B) were determined in lipid extracts of isolated adipocytes from subjects that were divided into groups of lean (BMI2), non-obese (23≤BMI<28 kg/m2), obese (BMI≥28 kg/m2), or obese subjects with type 2 diabetes (as indicated). Lines indicate significant differences between indicated groups (p<0.05).
Figure 2. Correlation of BMI and insulin-resistance…
Figure 2. Correlation of BMI and insulin-resistance index (HOMA) with adipocyte concentration of β-carotene.
(A) All subjects were included. There is a significant correlation between adipocyte content of β-carotene and BMI of donor subjects: Y = 7.14–0.10X; r2 = 0.10; p = 0.02. (B) All non-diabetic subjects were included. There is no significant correlation between adipocyte content of β-carotene and HOMA of non-diabetic donor subjects.
Figure 3. Total adipocyte stores of β-carotene…
Figure 3. Total adipocyte stores of β-carotene in subjects.
Whole body content of β-carotene stored in adipocytes was determined for each subject as the adipocyte concentration of β-carotene adjusted for total body fat. No statistically significant difference was found between the mean values in the groups using one-way analysis of variance (ANOVA), p>0.5.

References

    1. Parker RS (1989) Carotenoids in human blood and tissues. The Journal of nutrition 119: 101–104.
    1. Parker RS (1996) Absorption, metabolism, and transport of carotenoids. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 10: 542–551.
    1. von Lintig J (2012) Provitamin A metabolism and functions in mammalian biology. The American journal of clinical nutrition 96: 1234S–1244S.
    1. Parker RS, Swanson JE, You CS, Edwards AJ, Huang T (1999) Bioavailability of carotenoids in human subjects. The Proceedings of the Nutrition Society 58: 155–162.
    1. Bjornson LK, Kayden HJ, Miller E, Moshell AN (1976) The transport of alpha-tocopherol and beta-carotene in human blood. Journal of lipid research 17: 343–352.
    1. Frey SK, Vogel S (2011) Vitamin A metabolism and adipose tissue biology. Nutrients 3: 27–39.
    1. Voutilainen S, Nurmi T, Mursu J, Rissanen TH (2006) Carotenoids and cardiovascular health. The American journal of clinical nutrition 83: 1265–1271.
    1. Kaplan LA, Lau JM, Stein EA (1990) Carotenoid composition, concentrations, and relationships in various human organs. Clinical physiology and biochemistry 8: 1–10.
    1. Gouranton E, Yazidi CE, Cardinault N, Amiot MJ, Borel P, et al. (2008) Purified low-density lipoprotein and bovine serum albumin efficiency to internalise lycopene into adipocytes. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 46: 3832–3836.
    1. Moussa M, Gouranton E, Gleize B, Yazidi CE, Niot I, et al. (2011) CD36 is involved in lycopene and lutein uptake by adipocytes and adipose tissue cultures. Molecular nutrition & food research 55: 578–584.
    1. von Lintig J, Wyss A (2001) Molecular analysis of vitamin A formation: cloning and characterization of beta-carotene 15,15′-dioxygenases. Archives of biochemistry and biophysics 385: 47–52.
    1. Janke J, Engeli S, Boschmann M, Adams F, Böhnke J, et al. (2006) Retionol-binding protein 4 in human obesity. Diabetes 55: 2805–2810.
    1. Brady WE, Mares-Perlman JA, Bowen P, Stacewicz-Sapuntzakis M (1996) Human serum carotenoid concentrations are related to physiologic and lifestyle factors. The Journal of nutrition 126: 129–137.
    1. Akbaraly TN, Favier A, Berr C (2009) Total plasma carotenoids and mortality in the elderly: results of the Epidemiology of Vascular Ageing (EVA) study. The British journal of nutrition 101: 86–92.
    1. Ford ES, Liu S, Mannino DM, Giles WH, Smith SJ (2003) C-reactive protein concentration and concentrations of blood vitamins, carotenoids, and selenium among United States adults. European journal of clinical nutrition 57: 1157–1163.
    1. Kritchevsky SB, Bush AJ, Pahor M, Gross MD (2000) Serum carotenoids and markers of inflammation in nonsmokers. American journal of epidemiology 152: 1065–1071.
    1. Ryden M, Garvin P, Kristenson M, Leanderson P, Ernerudh J, et al. (2012) Provitamin A carotenoids are independently associated with matrix metalloproteinase-9 in plasma samples from a general population. Journal of internal medicine 272: 371–384.
    1. Beydoun MA, Canas JA, Beydoun HA, Chen X, Shroff MR, et al. (2012) Serum antioxidant concentrations and metabolic syndrome are associated among U.S. adolescents in recent national surveys. The Journal of nutrition 142: 1693–1704.
    1. Coyne T, Ibiebele TI, Baade PD, McClintock CS, Shaw JE (2009) Metabolic syndrome and serum carotenoids: findings of a cross-sectional study in Queensland, Australia. The British journal of nutrition 102: 1668–1677.
    1. Coyne T, Ibiebele TI, Baade PD, Dobson A, McClintock C, et al. (2005) Diabetes mellitus and serum carotenoids: findings of a population-based study in Queensland, Australia. The American journal of clinical nutrition 82: 685–693.
    1. Virtanen SM, van't Veer P, Kok F, Kardinaal AF, Aro A (1996) Predictors of adipose tissue carotenoid and retinol levels in nine countries. The EURAMIC Study. American journal of epidemiology 144: 968–979.
    1. Kabagambe EK, Furtado J, Baylin A, Campos H (2005) Some dietary and adipose tissue carotenoids are associated with the risk of nonfatal acute myocardial infarction in Costa Rica. The Journal of nutrition 135: 1763–1769.
    1. El-Sohemy A, Baylin A, Kabagambe E, Ascherio A, Spiegelman D, et al. (2002) Individual carotenoid concentrations in adipose tissue and plasma as biomarkers of dietary intake. The American journal of clinical nutrition 76: 172–179.
    1. Chung HY, Ferreira AL, Epstein S, Paiva SA, Castaneda-Sceppa C, et al. (2009) Site-specific concentrations of carotenoids in adipose tissue: relations with dietary and serum carotenoid concentrations in healthy adults. The American journal of clinical nutrition 90: 533–539.
    1. Deurenberg P, Weststrate JA, Seidell JC (1991) Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. The British journal of nutrition 65: 105–114.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, et al. (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412–419.
    1. Strålfors P, Honnor RC (1989) Insulin-induced dephosphorylation of hormone-sensitive lipase. Correlation with lipolysis and cAMP-dependent protein kinase activity. Eur J Biochem 182: 379–385.
    1. Danielsson A, Öst A, Lystedt E, Kjolhede P, Gustavsson J, et al. (2005) Insulin resistance in human adipocytes downstream of IRS1 after surgical cell isolation, but at the level of phosphorylation of IRS1 in type 2 diabetes. FEBS J 272: 141–151.
    1. Tokunaga M, Wakamatsu E, Sato M, Namiki O, Yokosawa A, et al. (1981) Lipid composition of adipose tissue from “Membranous lipodystrophy”. Tohoku J Exp Med 133: 451–456.
    1. Schreibman PH, Dell RB (1975) Human adipocyte cholesterol, concentration, localization, synthesis and turnover. J Clin Invest 55: 986–993.
    1. Johnson EJ, Suter PM, Sahyoun N, Ribaya-Mercado JD, Russell RM (1995) Relation between beta-carotene intake and plasma and adipose tissue concentrations of carotenoids and retinoids. The American journal of clinical nutrition 62: 598–603.
    1. Sluijs I, Beulens JW, Grobbee DE, van der Schouw YT (2009) Dietary carotenoid intake is associated with lower prevalence of metabolic syndrome in middle-aged and elderly men. The Journal of nutrition 139: 987–992.
    1. Lee MJ, Fried SK (2009) Integration of hormonal and nutrient signals that regulate leptin synthesis and secretion. American journal of physiology Endocrinology and metabolism 296: E1230–1238.
    1. Amengual J, Gouranton E, vanHelden YGJ, Hessel S, Ribot J, et al. (2013) Beta-carotene reduces body adiposity of mice via BCMO1. PLoS ONE 6: e20644.
    1. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, et al. (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436: 356–362.
    1. Öst A, Danielsson A, Liden M, Eriksson U, Nystrom FH, et al. (2007) Retinol-binding protein-4 attenuates insulin-induced phosphorylation of IRS1 and ERK1/2 in primary human adipocytes. FASEB J 21: 3696–3704.
    1. Lobo GP, Amengual J, Li HN, Golczak M, Bonet ML, et al. (2010) Beta,beta-carotene decreases peroxisome proliferator receptor gamma activity and reduces lipid storage capacity of adipocytes in a beta,beta-carotene oxygenase 1-dependent manner. The Journal of biological chemistry 285: 27891–27899.
    1. D'Ambrosio DN, Clugston RD, Blaner WS (2011) Vitamin A metabolism: an update. Nutrients 3: 63–103.

Source: PubMed

3
Iratkozz fel