Feasibility and preliminary efficacy of the LEAD trial: a cluster randomized controlled lifestyle intervention to improve hippocampal volume in older adults at-risk for dementia

N D Koblinsky, N D Anderson, F Ajwani, M D Parrott, D Dawson, S Marzolini, P Oh, B MacIntosh, L Middleton, G Ferland, C E Greenwood, N D Koblinsky, N D Anderson, F Ajwani, M D Parrott, D Dawson, S Marzolini, P Oh, B MacIntosh, L Middleton, G Ferland, C E Greenwood

Abstract

Background: Healthy diet and exercise are associated with reduced risk of dementia in older adults. The impact of diet and exercise interventions on brain health is less consistent, especially with dietary interventions which rely on varying approaches. Our objective was to evaluate the feasibility and preliminary efficacy of a 6-month intervention combining exercise with a novel dietary counseling approach to improve hippocampal volume among older adults at-risk for dementia.

Methods: Participants with vascular risk factors and subjective cognitive decline or early mild cognitive impairment were cluster randomized in groups of 3-4 to the diet intervention (DIET) or control education (ED) group. All participants engaged in 1 h of supervised exercise per week and additional exercise at home. DIET involved 1 h per week of group-based dietary counseling comprising education, goal setting, and strategy training. ED involved 1 h per week of group-based brain health education classes. Our primary outcome was change in hippocampal volume from baseline to 6 months. Secondary outcomes included changes in cognitive function, blood biomarkers, diet, and fitness. Recruitment challenges and early discontinuation of the trial due to COVID-19 necessitated a revised focus on feasibility and preliminary efficacy.

Results: Of 190 older adults contacted, 14 (7%) were eligible and enrolled, constituting 21% of our recruitment target. All participants completed the intervention and attended 90% of exercise and DIET/ED sessions on average. All 6-month assessments prior to COVID-19 were completed but disruptions to in-person testing resulted in incomplete data collection. No serious adverse events occurred and all participants expressed positive feedback about the study. Preliminary findings did not identify any significant changes in hippocampal volume; however, substantial improvements in diet and HbA1c were observed with DIET compared to ED (d = 1.75 and 1.07, respectively).

Conclusions: High adherence and retention rates were observed among participants and preliminary findings illustrate improvements in diet quality and HbA1c. These results indicate that a larger trial is feasible if difficulties surrounding recruitment can be mitigated.

Trial registration: ClinicalTrials.gov identifier: NCT03056508 .

Keywords: Diet; Early MCI; Exercise; Feasibility; Intervention; Subjective cognitive decline; Vascular risk factors.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Study flow diagram
Fig. 2
Fig. 2
Individual changes in Brain-healthy Eating Index (BEI) scores by cluster

References

    1. Prince MJ, Wimo A, Guerchet MM, Ali GC, Wu YT, Prina M. World Alzheimer Report 2015—the global impact of dementia: an analysis of prevalence, incidence, cost and trends. London: Alzheimer's Disease International; 2015.
    1. Jessen F, Wolfsgruber S, Wiese B, Bickel H, Mösch E, Kaduszkiewicz H, et al. AD dementia risk in late MCI, in early MCI, and in subjective memory impairment. Alzheimers Dement. 2014;10(1):76–83.
    1. Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chételat G, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. 2014;10(6):844–852.
    1. Röhr S, Pabst A, Riedel-Heller SG, Jessen F, Turana Y, Handajani YS, et al. Estimating prevalence of subjective cognitive decline in and across international cohort studies of aging: a COSMIC study. Alz Res Therapy. 2020;12:167.
    1. Jessen F, Amariglio RE, Buckley RF, van der Flier WM, Han Y, Molinuevo JL, et al. The characterisation of subjective cognitive decline. Lancet Neurol. 2020;19(3):271–278.
    1. Liew TM. Trajectories of subjective cognitive decline, and the risk of mild cognitive impairment and dementia. Alzheimers Res Ther. 2020;12(1):135.
    1. Mitchell AJ, Beaumont H, Ferguson D, Yadegarfar M, Stubbs B. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: meta-analysis. Acta Psychiatr Scand. 2014;130(6):439–451. doi: 10.1111/acps.12336.
    1. Slot RER, Sikkes SAM, Berkhof J, Brodaty H, Buckley R, Cavedo E, et al. Subjective cognitive decline and rates of incident Alzheimer’s disease and non-Alzheimer’s disease dementia. Alzheimers Dement. 2019;15(3):465–476.
    1. Aisen PS, Petersen RC, Donohue MC, Gamst A, Raman R, Thomas RG, et al. Alzheimer's disease neuroimaging initiative. Clinical Core of the Alzheimer's Disease Neuroimaging Initiative: progress and plans. Alzheimers Dement. 2010;6(3):239–246.
    1. Blackwell DL, Villarroel MA. Tables of summary health statistics for US adults: 2017 National Health Interview Survey. National Center for Health Statistics. 2018.
    1. Rotenberg S, Leung C, Quach H, Anderson ND, Dawson DR. Occupational performance issues in older adults with subjective cognitive decline. Disabil Rehabil. 2021:1–8. 10.1080/09638288.2021.1916626 Epub ahead of print. PMID: 33989108.
    1. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–446.
    1. Aridi YS, Walker JL, Wright ORL. The Association between the Mediterranean dietary pattern and cognitive health: a systematic review. Nutrients. 2017;9(7):674.
    1. Blondell SJ, Hammersley-Mather R, Veerman JL. Does physical activity prevent cognitive decline and dementia?: a systematic review and meta-analysis of longitudinal studies. BMC Public Health. 2014;14:510.
    1. Beckett MW, Ardern CI, Rotondi MA. A meta-analysis of prospective studies on the role of physical activity and the prevention of Alzheimer's disease in older adults. BMC Geriatr. 2015;15:9.
    1. Hamer M, Chida Y. Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med. 2009;39(1):3–11.
    1. Samadi M, Moradi S, Moradinazar M, Mostafai R, Pasdar Y. Dietary pattern in relation to the risk of Alzheimer's disease: a systematic review. Neurol Sci. 2019;40(10):2031–2043.
    1. Solfrizzi V, Frisardi V, Seripa D, Logroscino G, Imbimbo BP, D'Onofrio G, et al. Mediterranean diet in predementia and dementia syndromes. CurrAlzheimer Res. 2011;8:520.
    1. Otaegui-Arrazola A, Amiano P, Elbusto A, Urdaneta E, Martínez-Lage P. Diet, cognition, and Alzheimer's disease: food for thought. Eur J Nutr. 2014;53(1):1–23.
    1. Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sports Med. 2018;52(3):154–160.
    1. Lista I, Sorrentino G. Biological mechanisms of physical activity in preventing cognitive decline. Cell Mol Neurobiol. 2010;30(4):493–503.
    1. MacIntosh BJ, Crane DE, Sage MD, Saeed Rajab A, Donahue MJ, Mcllroy WE, et al. Impact of a single bout of aerobic exercise on regional brain perfusion and activation responses in healthy young adults. PLoS One. 2014;9(1):e85163.
    1. Ma CL, Ma XT, Wang JJ, Liu H, Chen YF, Yang Y. Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behav Brain Res. 2017;317:332–339.
    1. Smith PJ, Blumenthal JA, Babyak MA, Craighead L, Welsh-Bohmer KA, Browndyke JN, et al. (2010) Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure. Hypertension. 2010;55:1331–1338.
    1. Valls-Pedret C, Sala-Vila A, Serra-Mir M, Corella D, de la Torre R, Martínez-González MÁ, et al. Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern Med. 2015;175(7):1094–1103.
    1. Knight A, Bryan J, Wilson C, Hodgson JM, Davis CR, Murphy KJ. The Mediterranean diet and cognitive function among healthy older adults in a 6-month randomised controlled trial: the MedLey Study. Nutrients. 2016;8(9):579.
    1. Kwok TC, Lam LC, Sea MM, Goggins W, Woo A. randomized controlled trial of dietetic interventions to prevent cognitive decline in old age hostel residents. J Eur J Clin Nutr. 2012;66(10):1135–1140.
    1. Marseglia A, Xu W, Fratiglioni L, Fabbri C, Berendsen AAM, Bialecka-Debek A, et al. Effect of the NU-AGE Diet on cognitive functioning in older adults: a randomized controlled trial. Front Physiol. 2018;9:349.
    1. Rondanelli M, Opizzi A, Faliva M, Mozzoni M, Antoniello N, Cazzola R, et al. Effects of a diet integration with an oily emulsion of DHA-phospholipids containing melatonin and tryptophan in elderly patients suffering from mild cognitive impairment. Nutr Neurosci. 2012;15(2):46–54.
    1. Samieri C, Sun Q, Townsend MK, Chiuve SE, Okereke OI, Willett WC, et al. The association between dietary patterns at midlife and health in aging: an observational study. Ann Intern Med. 2013;159(9):584–591.
    1. Vauzour D, Camprubi-Robles M, Miquel-Kergoat S, Andres-Lacueva C, Bánáti D, Barberger-Gateau P, et al. Nutrition for the ageing brain: Towards evidence for an optimal diet. Ageing Res Rev. 2017;35:222–240.
    1. Gomez P, Tyagi E. Diet and cognition: interplay between cell metabolism and neuronal plasticity. Curr Opin Clin Nutr Metab Care. 2013;16(6):726–733.
    1. Bartachowski Z, Conway J, Wallach Y, Chakkamparambil B, Alakkassery S, Grossberg GT. Dietary interventions to prevent or delay Alzheimer’s disease: what the evidence shows. Curr Nutr Rep. 2020;9:210–225.
    1. Rosenberg A, Mangialasche F, Ngandu T, Solomon A, Kivipelto M. Multidomain interventions to prevent cognitive impairment, Alzheimer's disease, and dementia: from FINGER to World-Wide FINGERS. J Prev Alzheimers Dis. 2020;7(1):29–36.
    1. Dawson D, Parrott MD, Marzolini S, Ajwani F, Ricupero M, Atlas B, Greenwood C. Promoting adoption of brain healthy eating patterns: a pilot study using problem-solving training. Poster session presented at: Alzheimer's Association International Conference. Toronto, ON, CA: 2016.
    1. Chertkow H, Borrie M, Whitehead V, Black SE, Feldman HH, Gauthier S, et al. The comprehensive assessment of neurodegeneration and dementia: Canadian Cohort Study. Can J Neurol Sci. 2019;46(5):499–511.
    1. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108:3017–3022.
    1. Rosano C, Venkatraman VK, Guralnik J, Newman AB, Glynn NW, Launer L, et al. Psychomotor speed and functional brain MRI 2 years after completing a physical activity treatment. J Gerontol A Biol Sci Med Sci. 2010;65:639–647.
    1. Ivey FM, Ryan AS, Hafer-Macko CE, Macko RF. Improved cerebral vasomotor reactivity after exercise training in hemiparetic stroke survivors. Stroke. 2011;42:1994–2000.
    1. Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67:71–79.
    1. Wechsler D. Wechsler Memory Scale–Third Edition manual. San Antonio: The Psychological Corporation; 1997.
    1. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. JAGS. 2005;53:695–699.
    1. Diabetes Canada Clinical Practice Guidelines Expert Committee Diabetes Canada 2018 Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada. Can J Diabetes. 2018;42(Suppl 1):S1–S325.
    1. Godin G, Shephard RJ. A simple method to assess exercise behaviour in the community. Can J Appl Sport Sci. 1985;10:141–146.
    1. American College of Sports Medicine . ACSM's guidelines for exercise testing and prescription. 11. Philadelphia: Lippincott Williams & Wilkins; 2010.
    1. Epstein DE, Sherwood A, Smith PJ, Craighead L, Caccia C, Lin PH, et al. Determinants and consequences of adherence to the dietary approaches to stop hypertension diet in African-American and white adults with high blood pressure: results from the ENCORE trial. J Acad Nutr Diet. 2012;112:1763–1773.
    1. Zazpe I, Sanchez-Tainta A, Estruch R, Lamuela-Raventos RM, Schroder H, Salas-Salvado J, et al. A large randomized individual and group intervention conducted by registered dietitians increased adherence to Mediterranean-type diets: the PREDIMED study. J Am Diet Assoc. 2008;108:1134–1144.
    1. Parrott M. Brain Health Food Guide. 2016.
    1. Dawson D, Bar Y. Using the CO-OP Approach: older adults with subjective cognitive complaints. In: Dawson D, McEwen S, Polatajko H, editors. Enabling participation across the lifespan: advancements, adaptations and extensions of the CO-OP ApproachTM. Bethesda: AOTA Press; 2017. pp. 119–134.
    1. Dawson D, Richardson J, Troyer A, Binns M, Clark A, Polatajko H, et al. An occupation-based strategy training approach to managing age-related executive changes: a pilot randomized controlled trial. Clin Rehabil. 2014;28(2):118–127.
    1. Csizmadi I, Kahle L, Ullman R, Dawe U, Zimmerman TP, Friedenreich CM, et al. Adaptation and evaluation of the National Cancer Institute's Diet History Questionnaire and nutrient database for Canadian populations. Public Health Nutr. 2007;10:88–96.
    1. Belleville S, Moussard A, Ansaldo AI, Belchior P, Bherer L, Bier N, et al. Rationale and Protocol of the ENGAGE study: a double-blind randomized controlled preference trial using a comprehensive cohort design to measure the effect of a cognitive and leisure-based intervention in older adults with a memory complaint. Trials. 2019;20:283.
    1. Marzolini S, Brooks D, Oh PI. Sex differences in completion of a 12-month cardiac rehabilitation programme: an analysis of 5922 women and men. Eur J Cardiovasc Prev Rehabil. 2008;15:698–703.
    1. Marzolini S, McIlroy W, Oh P, Brooks D. Can individuals participating in cardiac rehabilitation achieve recommended exercise training levels following stroke? J Cardiopulm Rehabil Prev. 2012;32:127–134.
    1. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–381.
    1. Duchesne S, Chouinard I, Potvin O, Fonov VS, Khademi A, Bartha R, et al. The Canadian dementia imaging protocol: harmonizing national cohorts. J Magn Reson Imaging. 2019;49(2):456–465.
    1. Goubran M, Ntiri E, Akhavein H, Holmes M, Nestor S, Ramirez J, et al. Hippocampal segmentation for atrophied brains using three-dimensional convolutional neural networks. Hum Brain Mapp. 2020;41(2):291–308.
    1. McDougall GJ, Becker H, Vaughan PW, Acee TW, Delville CL. The revised direct assessment of functional status for independent older adults. Gerontologist. 2010;50(3):363–370.
    1. Troyer AK. Improving memory knowledge, satisfaction, and functioning via an education and intervention program for older adults. Aging Neuropsychol Cognit. 2001;8(4):256–268.
    1. Pachana NA, Byrne GJ, Siddle H, Koloski N, Harley E, Arnold E. Development and validation of the Geriatric Anxiety Inventory. Int Psychogeriatr. 2007;19(1):103–114.
    1. Robert PH, Clairet S, Benoit M, Koutaich J, Bertogliati C, Tible O, et al. The apathy inventory: assessment of apathy and awareness in Alzheimer’s disease, Parkinson’s disease and mild cognitive impairment. Int J Geriatr Psychiatry. 2002;17(12):1099–1105.
    1. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: the Beck Anxiety Inventory. J Consult Clin Psychol. 1988;56:893–897.
    1. Beck AT, Rush AJ, Shaw BF, Emery G. Cognitive therapy of depression. New York: Guilford press; 1979.
    1. Schmidt M. Rey auditory verbal learning test: A handbook. Los Angeles: Western Psychological Services; 1996.
    1. Reitan RM, Wolfson D. The Halstead-Reitan neuropsychological test battery: Theory and clinical interpretation. 2. Tuscon: Neuropsychology Press; 1993.
    1. Lippa SM, Davis RN. Inhibition/Switching Is not Necessarily Harder than Inhibition: an Analysis of the D-KEFS Color-Word Interference Test. Arch Clin Neuropsychol. 2010;25(2):146–152.
    1. Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res. 1983;17(1):37–49.
    1. Powell LE, Myers AM. The Activities-specific Balance Confidence (ABC) scale. J Gerontol A Biol Sci Med Sci. 1995;50(1):M28–M34.
    1. Carpenter JS, Andryowski MA. Psychometric evaluation of the pittsburgh sleep quality index. J Psychom Res. 1998;45(1):5–13.
    1. Erkkila AT, Booth SL, Hu FB, Jacques PF, Lichtenstein AH. Phylloquinone intake and risk of cardiovascular diseases in men. Nutr Metab Cardiovasc Dis. 2007;17:58–62.
    1. Presse N, Belleville S, Gaudreau P, Greenwood CE, Kergoat M-J, Morais JA, et al. Vitamin K status and cognitive function in healthy older adults. Neurobiol Aging. 2013;34:2777–2783.
    1. Bruce RA, Kusumi F, Hosmer D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am Heart J. 1973;85(4):546–562.
    1. R Core Team . R: a language and environment for statistical computing. Vienna: R Core Team; 2019.
    1. Anstey KJ, von Sanden C, Salim A, O'Kearney R. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol. 2007;166(4):367–378.
    1. Ganzer CA, Barnes A, Uphold C, Jacobs AR. Transient Ischemic Attack and Cognitive Impairment: A Review. J Neurosci Nurs. 2016;48(6):322–327.
    1. Gosselin N, Baril AA, Osorio RS, Kaminska M, Carrier J. Obstructive sleep apnea and the risk of cognitive decline in older adults. Am J Respir Crit Care Med. 2019;199(2):142–148.
    1. Kalantarian S, Stern TA, Mansour M, Ruskin JN. Cognitive impairment associated with atrial fibrillation: a meta-analysis. Ann Intern Med. 2013;158(5 Pt 1):338–346.
    1. Lenters-Westra E, Schindhelm RK, Bilo HJ, Groenier KH, Slingerland RJ. Differences in interpretation of haemoglobin A1c values among diabetes care professionals. Neth J Med. 2014;72(9):462–466.
    1. Ramirez A, Wolfsgruber S, Lange C, Kaduszkiewicz H, Weyerer S, Werle J, et al. Elevated HbA1c is associated with increased risk of incident dementia in primary care patients. J Alzheimers Dis. 2015;44(4):1203–1212.
    1. Ferland G, Vitamin K. In: Present knowledge in nutrition. 11. Marriott B, Birt DF, Stalling V, Yates AA, editors. Washington, DC: Academic; 2020. pp. 137–153.
    1. Kiely A, Ferland G, Ouliass B, O’Toole PW, Purtill H, O’Connor EM. Vitamin K status and inflammation are associated with cognition in older Irish adults. Nutr Neurosci. 2020;23(8):591–599.
    1. Masella R, Malorni W. Gender-related differences in dietary habits. Clin Manag Issues. 2017;11(2):59–62.
    1. van Uffelen JGZ, Khan A, Burton NW. Gender differences in physical activity motivators and context preferences: a population-based study in people in their sixties. BMC Public Health. 2017;17:624.
    1. Age-Well. COVID-19 has significantly increased the use of many technologies among older Canadians: poll [cited 2020 Nov 24]. .
    1. Statistics Canada. Analytical Studies Branch Research Paper Series; Evolving Internet Use Among Canadian Seniors; 2019.

Source: PubMed

3
Iratkozz fel