Role of Tyrosine Isomers in Acute and Chronic Diseases Leading to Oxidative Stress - A Review

Gergő A Molnár, Szilárd Kun, Eszter Sélley, Melinda Kertész, Lívia Szélig, Csaba Csontos, Katalin Böddi, Lajos Bogár, Attila Miseta, István Wittmann, Gergő A Molnár, Szilárd Kun, Eszter Sélley, Melinda Kertész, Lívia Szélig, Csaba Csontos, Katalin Böddi, Lajos Bogár, Attila Miseta, István Wittmann

Abstract

Oxidative stress plays a major role in the pathogenesis of a variety of acute and chronic diseases. Measurement of the oxidative stress-related end products may be performed, e.g. that of structural isomers of the physiological para-tyrosine, namely meta- and ortho-tyrosine, that are oxidized derivatives of phenylalanine. Recent data suggest that in sepsis, serum level of meta-tyrosine increases, which peaks on the 2(nd) and 3(rd) days (p<0.05 vs. controls), and the kinetics follows the intensity of the systemic inflammation correlating with serum procalcitonin levels. In a similar study subset, urinary meta-tyrosine excretion correlated with both need of daily insulin dose and the insulin-glucose product in non-diabetic septic cases (p<0.01 for both). Using linear regression model, meta-tyrosine excretion, urinary meta-tyrosine/para-tyrosine, urinary ortho-tyrosine/para-tyrosine and urinary (meta- + orthotyrosine)/ para-tyrosine proved to be markers of carbohydrate homeostasis. In a chronic rodent model, we tried to compensate the abnormal tyrosine isomers using para-tyrosine, the physiological amino acid. Rats were fed a standard high cholesterol-diet, and were given para-tyrosine or vehicle orally. High-cholesterol feeding lead to a significant increase in aortic wall meta-tyrosine content and a decreased vasorelaxation of the aorta to insulin and the glucagon-like peptide-1 analogue, liraglutide, that both could be prevented by administration of para-tyrosine. Concluding, these data suggest that meta- and ortho-tyrosine are potential markers of oxidative stress in acute diseases related to oxidative stress, and may also interfere with insulin action in septic humans. Competition of meta- and ortho-tyrosine by supplementation of para-tyrosine may exert a protective role in oxidative stress-related diseases.

Figures

Fig. (1)
Fig. (1)
Conversion reactions of phenylalanine yielding para-, meta- and ortho-tyrosine, and formation of isoforms of dihydroxy-phenylalanine (DOPA) from the different tyrosine isoforms.
Fig. (2)
Fig. (2)
Proposed synthetic routes of meta-tyrosine in plants as suggested by Huang et al. [36].
Fig. (3)
Fig. (3)
Typical chromatograms of the selected biomarkers extracted from the analysis of spiked urine sample. Note: Spiking concentrations were 73 nmol/L for 8OHdG and m-Tyr, 182 nmol/L for 2-dG, o-Tyr, 3NO2-Tyr and 3Cl-Tyr and 23 mM for p-Tyr and Phe. Image from Kuligowski et al. PloS One 2014, 9: e93703 [48], reproduced under the creative commons license.
Fig. (4)
Fig. (4)
Non-zero concentrations found from the analysis of 222 urine samples of extremely low birth-weight infants included in the double-blinded randomized clinical study REOX (REOX 2012-2013, EUDRACT 2088-005047-42). The percentages of concentrations, LOD in the sample set were: 15% for o-Tyr, 79% for m-Tyr, 0% for p-Tyr and Phe, 93% for NO2-Tyr, 68% for 3Cl-Tyr, 0.4% for 8OH-dG and 0.4% for 2dG. Boxes indicate the 1st and the 3rd quartiles, the median is shown as a black line, whiskers mark the 9th and 91st percentiles, red triangles represent mean concentrations and blue circles are outliers. Image from Kuligowski et al. PloS One 2014, 9: e93703 [48], reproduced under the creative commons license.
Fig. (5)
Fig. (5)
Time course of myocardial release of D stereoisomer of p-, m- and o-Tyr in the cardiac effluent at baseline and at various time points during reperfusion after 30-min ischemia. Hearts were perfused with D-Phe. Data are mean + S.E.; n =8; *p <0.05 vs. pre-ischemic value. Fig. reproduced from Biondi et al. Cardiovasc. Res. 2006, 15;71(2):322-330 [50] with permission of Oxford University Press.
Fig. (6)
Fig. (6)
Serum levels of (A) meta-tyrosine, (B) ortho-tyrosine and (C) para-tyrosine in septic patients. Data are expressed as median and inter-quartile range (IQR; standard 25th-75th percentile) and 5th and 95th confidence interval). Asterisks indicate statistical differences within the septic group compared to day 1 (*: p<0.05; **: p<0.01). The “#” symbols show significant differences between patients and controls (#: p<0.05; ##: p<0.01). Serum para-tyrosine levels showed a significant day-by-day elevation with trend analysis. (p=0.002) Reproduced with permission of Maney Publishing Ltd. from Szélig et al. Redox Report 2015. Jul. 20 [53].
Fig. (7)
Fig. (7)
Urinary (A) meta-tyrosine/creatinine, (B) ortho-tyrosine/creatinine and (C) para-tyrosine/creatinine ratio in septic patients. Data are expressed as median, inter-quartile range (IQR; standard 25th-75th percentile) and 5th and 95th confidence interval. Asterisks indicate statistical differences within the septic group compared to day 1. (*: p<0.05; **: p<0.01; ***: p<0.001). The “#” symbols show significant differences between patients and controls (#: p<0.05; ##: p<0.01; ###: p<0.001). Urinary meta-tyrosine/creatinine ratios had a decreasing tendency (p=0.018), while urinary para-tyrosine/creatinine ratios showed a marked increase (p=0.001). Reproduced with permission of Maney Publishing Ltd. from Szélig et al. Redox Report 2015. Jul. 20 [53].
Fig. (8)
Fig. (8)
Fe of para-, meta- and ortho-tyrosine (median; standard 25th-75th percentile and 5th and 95th confidence interval). Fe of m-Tyr showed a decreasing tendency (p=0.009). (A) Fe of para-tyrosine (median; standard 25th-75th percentile and 5th and 95th confidence interval). (B) Asterisk indicates a statistically relevant difference within the septic group compared to day 1 (*: p<0.05). The “#” symbols show significant differences between cases and controls (#: p<0.05; ##: p<0.01; ###: p<0.001). The “+” symbols show significant differences between Fe of meta- or ortho-tyrosine and that of para-tyrosine (+: p<0.05; ++: p<0.01; +++: p<0.001) Reproduced with permission of Maney Publishing Ltd. from Szélig et al. Redox Report 2015. Jul. 20 [53].
Fig. (9)
Fig. (9)
Urinary m-Tyr/p-Tyr ratio in septic patients requiring insulin administration, according to (A) daily insulin dose or (B) insulin-glucose product. #: p=0.005 vs. DID < median; ##: p=0.01 vs. IGP < median. Abbreviations: DID, daily insulin dose; IGP, insulin-glucose product. Reproduced with permission of Hindawi Publishing Corporation from Kun et al. Oxidative Medicine and Cellular Longevity, Article ID 839748 [54].
Fig. (10)
Fig. (10)
Correlation of urinary m-Tyr concentration with (A) DID and (C) IGP. Correlation of urinary m-Tyr/p-Tyr ratio with (B) DID and (D) IGP in septic patients requiring insulin administration. Abbreviations: DID, daily insulin dose; IGP, insulin-glucose product. Reproduced with permission of Hindawi Publishing Corporation from Kun et al. Oxidative Medicine and Cellular Longevity, Article ID 839748 [54].
Fig. (11)
Fig. (11)
Area-under-the-curve (AUC) of plasma insulin during OGTT in control rats (Control), cholesterol-fed rats without p-Tyr supplementation (Chol) and cholesterol-fed rats with p-Tyr supplementation (Chol+p-Tyr). *: p<0.05 vs. Contr. Reproduced with permission of Bentham Science Publishers from Selley et al. Protein and Peptide Letters 2015; 22(8): 736-742 [84].
Fig. (12)
Fig. (12)
Ratios of protein-bound m-Tyr and p-Tyr in thoracic aorta of control rats (Contr), cholesterol-fed rats without p-Tyr supplementation (Chol) and cholesterol-fed rats with p-Tyr supplementation (Chol+p-Tyr). **: p<0.01 vs. Contr. Reproduced with permission of Bentham Science Publishers from Selley et al. Protein and Peptide Letters 2015; 22(8): 736-742 [84].
Fig. (13)
Fig. (13)
Liraglutide-induced (panel A) and insulin-induced (Panel B) relaxation relaxation of the thoracic aorta of control rats (Contr), cholesterol-fed rats without p-Tyr supplementation (Chol) and cholesterol-fed rats with p-Tyr supplementation (Chol+p-Tyr). *: p<0.05. Reproduced with permission of Bentham Science Publishers from Selley et al. Protein and Peptide Letters 2015; 22(8): 736-742 [84].

References

    1. Halliwell B., Gutteridge J.M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 1984;219:1–14.
    1. Gutteridge J.M. Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann. N. Y. Acad. Sci. 1994;738:201–213.
    1. Paravicini T.M., Touyz R.M. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care. 2008;31(Suppl. 2):S170–S180.
    1. van der Vliet A., Janssen-Heininger Y.M. Hydrogen peroxide as a damage signal in tissue injury and inflammation: murderer, mediator, or messenger? J. Cell. Biochem. 2014;115(3):427–435.
    1. Mittal M., Siddiqui M.R., Tran K., Reddy S.P., Malik A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014;20(7):1126–1167.
    1. Oyinloye B.E., Adenowo A.F., Kappo A.P. Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases. Pharmaceuticals (Basel) 2015;8(2):151–175.
    1. Quaye I.K. Extracellular hemoglobin: the case of a friend turned foe. Front. Physiol. 2015;6:96.
    1. Brodsky S.V., Goligorsky M.S. Endothelium under stress: local and systemic messages. Semin. Nephrol. 2012;32(2):192–198.
    1. Görlach A., Dimova E.Y., Petry A., Martínez-Ruiz A., Hernansanz-Agustín P., Rolo A.P., Palmeira C.M., Kietzmann T. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol. 2015;6:372–385.
    1. Harijith A., Ebenezer D.L., Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front. Physiol. 2014;5:352.
    1. Kohen R., Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol. 2002;30(6):620–650.
    1. Wagner Z., Wittmann I., Mazák I., Schinzel R., Heidland A., Kientsch-Engel R., Nagy J.N. (epsilon)-(carboxymethyl)lysine levels in patients with type 2 diabetes: role of renal function. Am. J. Kidney Dis. 2001;38(4):785–791.
    1. Hipkiss A.R. Accumulation of altered proteins and ageing: causes and effects. Exp. Gerontol. 2006;41(5):464–473.
    1. Protano C., Andreoli R., Mutti A., Petti S., Vitali M. Biomarkers of oxidative stress to nucleic acids: background levels and effects of body mass index and life-style factors in an urban paediatric population. Sci. Total Environ. 2014;500-501:44–51.
    1. Jacob K.D., Noren Hooten N., Trzeciak A.R., Evans M.K. Markers of oxidant stress that are clinically relevant in aging and age-related disease. Mech. Ageing Dev. 2013;134(3-4):139–157.
    1. Rodrigo R., Libuy M., Feliú F., Hasson D. Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. Dis. Markers. 2013;35(6):773–790.
    1. Brodsky S.V., Goligorsky M.S. Endothelium under stress: local and systemic messages. Semin. Nephrol. 2012;32(2):192–198.
    1. Kopple J.D. Phenylalanine and tyrosine metabolism in chronic kidney failure. J. Nutr. 2007;137(6) Suppl. 1:1586S–1590S.
    1. Dalgliesh C.E. Nonspecific formation of hydroxylated metabolites of the aromatic amino acids. Arch. Biochem. Biophys. 1955;58(1):214–226.
    1. Dennell R. The amino acid metabolism of a developing insect cuticle: the larval cuticle and puparium of Calliphora vomitoria., I. Changes in amino acid composition during development. Proc. Royal Soc. Lond. Biol. Sci. 1958;148(931):270–279.
    1. Molnár G.A., Nemes V., Biró Z., Ludány A., Wagner Z., Wittmann I. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase. Free Radic. Res. 2005;39(12):1359–1366.
    1. Molnár G.A., Wagner Z., Markó L., Kőszegi T., Mohás M., Kocsis B., Matus Z., Wagner L., Tamaskó M., Mazák I., Laczy B., Nagy J., Wittmann I. Urinary ortho-tyrosine excretion in diabetes mellitus and renal failure: evidence for hydroxyl radical production. Kidney Int. 2005;68(5):2281–2277.
    1. Zglinicki T., editor. Ageing at the molecular level. Netherlands: Springer; 2003. Sitte: Oxidative Damage to Proteins. pp. 27–47.
    1. Maskos Z., Rush J.D., Koppenol W.H. The hydroxylation of phenylalanine and tyrosine: a comparison with salicylate and tryptophan. Arch. Biochem. Biophys. 1992;296(2):521–529.
    1. Bertin C., Harmon R., Akaogi M., Weidenhamer J.D., Weston L.A. Assessment of the phytotoxic potential of m-tyrosine in laboratory soil bioassays. J. Chem. Ecol. 2009;35(11):1288–1294.
    1. Duke S.O. The emergence of grass root chemical ecology. Proc. Natl. Acad. Sci. USA. 2007;104(43):16729–16730.
    1. Huang T., Rehak L., Jander G. meta-Tyrosine in Festuca rubra ssp. commutata (Chewings fescue) is synthesized by hydroxylation of phenylalanine. Phytochemistry. 2012;75:60–66.
    1. Zhang W., Ames B.D., Walsh C.T. Identification of phenylalanine 3-hydroxylase for meta-tyrosine biosynthesis. Biochemistry. 2011;50(24):5401–5403.
    1. Ishimitsu S., Fujimoto S., Ohara A. High-performance liquid chromatographic determination of m-tyrosine and o-tyrosine in rat urine. J. Chromatogr. A. 1989;489(2):377–383.
    1. Ishimitsu S., Fujimoto S., Ohara A. Formation of m-tyrosine and o-tyrosine from L-phenylalanine by rat brain homogenate. Chem. Pharm. Bull. (Tokyo) 1980;28(5):1653–1655.
    1. Gomez H., Ince C., De Backer D., Pickkers P., Payen D., Hotchkiss J., Kellum J.A. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock. 2014;41(1):3–11.
    1. Pisetsky D.S., Ullal A.J., Gauley J., Ning T.C. Microparticles as mediators and biomarkers of rheumatic disease. Rheumatology (Oxford) 2012;51(10):1737–1746.
    1. Bianchi M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 2007;81(1):1–5.
    1. Reid V.L., Webster N.R. Role of microparticles in sepsis. Br. J. Anaesth. 2012;109(4):503–513.
    1. Heyman S.N., Evans R.G., Rosen S., Rosenberger C. Cellular adaptive changes in AKI: mitigating renal hypoxic injury. Nephrol. Dial. Transplant. 2012;27(5):1721–1728.
    1. Goode H.F., Cowley H.C., Walker B.E., Howdle P.D., Webster N.R. Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction. Crit. Care Med. 1995;23(4):646–651.
    1. Galley H.F. Oxidative stress and mitochondrial dysfunction in sepsis. Br. J. Anaesth. 2011;107(1):57–64.
    1. Galley H.F., Davies M.J., Webster N.R. Xanthine oxidase activity and free radical generation in patients with sepsis syndrome. Crit. Care Med. 1996;24(10):1649–1653.
    1. Galley H.F. Bench-to-bedside review: Targeting antioxidants to mitochondria in sepsis. Crit. Care. 2010;14(4):230.
    1. Virdis A., Colucci R., Fornai M., Blandizzi C., Duranti E., Pinto S., Bernardini N., Segnani C., Antonioli L., Taddei S., Salvetti A., Del Tacca M. Cyclooxygenase-2 inhibition improves vascular endothelial dysfunction in a rat model of endotoxic shock: role of inducible nitric-oxide synthase and oxidative stress. J. Pharmacol. Exp. Ther. 2005;312(3):945–953.
    1. Mühl D., Woth G., Drenkovics L., Varga A., Ghosh S., Csontos C., Bogár L., Wéber G., Lantos J. Comparison of oxidative stress & leukocyte activation in patients with severe sepsis & burn injury. Indian J. Med. Res. 2011;134:69–78.
    1. Foldi V., Csontos C., Bogar L., Roth E., Lantos J. Effects of fluid resuscitation methods on burn trauma-induced oxidative stress. J. Burn Care Res. 2009;30(6):957–966.
    1. Csontos C., Rezman B., Foldi V., Bogar L., Drenkovics L., Röth E., Weber G., Lantos J. Effect of N-acetylcysteine treatment on oxidative stress and inflammation after severe burn. Burns. 2012;38(3):428–437.
    1. Solberg R., Andresen J.H., Escrig R., Vento M., Saugstad O.D. Resuscitation of hypoxic newborn piglets with oxygen induces a dose-dependent increase in markers of oxidation. Pediatr. Res. 2007;62(5):559–563.
    1. Ogihara T., Hirano K., Ogihara H., Misaki K., Hiroi M., Morinobu T., Kim H.S., Ogawa S., Ban R., Hasegawa M., Tamai H. Non-protein-bound transition metals and hydroxyl radical generation in cerebrospinal fluid of newborn infants with hypoxic ischemic encephalopathy. Pediatr. Res. 2003;53(4):594–599.
    1. Ledo A., Arduini A., Asensi M.A., Sastre J., Escrig R., Brugada M., Aguar M., Saenz P., Vento M. Human milk enhances antioxidant defenses against hydroxyl radical aggression in preterm infants. Am. J. Clin. Nutr. 2009;89(1):210–215.
    1. Vento M., Aguar M., Escobar J., Arduini A., Escrig R., Brugada M., Izquierdo I., Asensi M.A., Sastre J., Saenz P., Gimeno A. Antenatal steroids and antioxidant enzyme activity in preterm infants: influence of gender and timing. Antioxid. Redox Signal. 2009;11(12):2945–2955.
    1. Kuligowski J., Torres-Cuevas I., Quintás G., Rook D., van Goudoever J.B., Cubells E., Asensi M., Lliso I., Nuñez A., Vento M., Escobar J. Assessment of oxidative damage to proteins and DNA in urine of newborn infants by a validated UPLC-MS/MS approach. PLoS One. 2014;9:e93703.
    1. Schultz S., Creed J., Schears G., Zaitseva T., Greeley W., Wilson D.F., Pastuszko A. Comparison of low-flow cardiopulmonary bypass and circulatory arrest on brain oxygen and metabolism. Ann. Thorac. Surg. 2004;77(6):2138–2143.
    1. Biondi R., Ambrosio G., Liebgott T., Cardounel A.J., Bettini M., Tritto I., Zweier J.L. Hydroxylation of D-phenylalanine as a novel approach to detect hydroxyl radicals: application to cardiac pathophysiology. Cardiovasc. Res. 2006;71(2):322–330.
    1. Magsino C.H., Hamouda W., Ghanim H., Browne R., Aljada A., Dandona P. Effect of triiodothyronine on reactive oxygen species generation by leukocytes, indices of oxidative damage, and antioxidant reserve. Metabolism. 2000;49(6):799–803.
    1. Dandona P., Mohanty P., Hamouda W., Ghanim H., Aljada A., Garg R., Kumar V. Inhibitory effect of a two day fast on reactive oxygen species (ROS) generation by leucocytes and plasma ortho-tyrosine and meta-tyrosine concentrations. J. Clin. Endocrinol. Metab. 2001;86(6):2899–2902.
    1. Szélig L., Kun S., Woth G., Molnár G.A., Zrínyi Z., Kátai E., Lantos J., Wittmann I., Bogár L., Miseta A., Csontos C. Time courses of changes of para-, meta-, and ortho-tyrosine in septic patients: A pilot study. Redox Rep. 2015 [Epub ahead of print].
    1. Kun S., Molnár G.A., Sélley E., Szélig L., Bogár L., Csontos C, Miseta A., Wittmann I. 2015.
    1. Van den Berghe G., Wouters P., Weekers F., Verwaest C., Bruyninckx F., Schetz M., Vlasselaers D., Ferdinande P., Lauwers P., Bouillon R. Intensive insulin therapy in the critically ill patients. N. Engl. J. Med. 2001;345:1359–1367.
    1. Finfer S., Chittock D.R., Su S.Y., Blair D., Foster D., Dhingra V., Bellomo R., Cook D., Dodek P., Henderson W.R., Hébert P.C., Heritier S., Heyland D.K., McArthur C., McDonald E., Mitchell I., Myburgh J.A., Norton R., Potter J., Robinson B.G., Ronco J.J. Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med. 2009;360(13):1283–1297.
    1. NICE-SUGAR Study Investigators for the Australian and New Zealand Intensive Care Society Clinical Trials Group and the Canadian Critical Care Trials Group Finfer, S.; Chittock, D.; Li, Y.; Foster, D.; Dhingra, V.; Bellomo, R.; Cook, D.; Dodek, P.; Hebert, P.; Henderson, W.; Heyland, D.; Higgins, A.; McArthur, C.; Mitchell, I.; Myburgh, J.; Robinson, B.; Ronco, J. Intensive versus conventional glucose control in critically ill patients with traumatic brain injury: long-term follow-up of a subgroup of patients from the NICE-SUGAR study. Intensive Care Med. 2015;41(6):1037–1047.
    1. Clain J., Ramar K., Surani S.R. Glucose control in critical care. World J. Diabetes. 2015;6(9):1082–1091.
    1. Lheureux O., Preiser J.C. Year in review 2013: Critical Care--metabolism. Crit. Care. 2014;18(5):571.
    1. Losser M.R., Damoisel C., Payen D. Bench-to-bedside review: Glucose and stress conditions in the intensive care unit. Crit. Care. 2010;14(4):231.
    1. Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes. 2005;54(6):1615–1625.
    1. Kalousová M., Zima T., Tesar V., Dusilová-Sulková S., Skrha J. Advanced glycoxidation end products in chronic diseases-clinical chemistry and genetic background. Mutat. Res. 2005;579(1-2):37–46.
    1. Berlett B.S., Stadtman E.R. Protein oxidation in aging, disease, and oxidative stress. 1997.
    1. Amann K., Wanner C., Ritz E. Cross-talk between the kidney and the cardiovascular system. J. Am. Soc. Nephrol. 2006;17(8):2112–2119.
    1. Shikata K., Makino H. Microinflammation in the pathogenesis of diabetic nephropathy. J. Diabetes Investig. 2013;4(2):142–149.
    1. Nath I., Nath C.K., Baruah M., Pathak M., Banerjee R., Goyal S. A study of inflammatory status in nephropathy patients with history of type-ii diabetes mellitus undergoing haemodialysis. J. Clin. Diagn. Res. 2013;7(10):2143–2145.
    1. Wang C.H., Chang R.W., Ko Y.H., Tsai P.R., Wang S.S., Chen Y.S., Ko W.J., Chang C.Y., Young T.H., Chang K.C. Prevention of arterial stiffening by using low-dose atorvastatin in diabetes is associated with decreased malondialdehyde. PLoS One. 2014;9(3):e90471.
    1. Hernández-Muñoz R., Olguín-Martínez M., Aguilar-Delfín I., Sánchez-Sevilla L., García-García N., Díaz-Muñoz M. Oxidant status and lipid composition of erythrocyte membranes in patients with type 2 diabetes, chronic liver damage, and a combination of both pathologies. 2013.
    1. Bandeira Sde M., Guedes Gda S., da Fonseca L.J., Pires A.S., Gelain D.P., Moreira J.C., Rabelo L.A., Vasconcelos S.M., Goulart M.O. Characterization of blood oxidative stress in type 2 diabetes mellitus patients: increase in lipid peroxidation and SOD activity. 2012.
    1. Mezzetti A., Cipollone F., Cuccurullo F. Oxidative stress and cardiovascular complications in diabetes: isoprostanes as new markers on an old paradigm. Cardiovasc. Res. 2000;47(3):475–488.
    1. Newsholme P., Rebelato E., Abdulkader F., Krause M., Carpinelli A., Curi R. Reactive oxygen and nitrogen species generation, antioxidant defenses, and β-cell function: a critical role for amino acids. J. Endocrinol. 2012;214(1):11–20.
    1. Murri M., Luque-Ramírez M., Insenser M., Ojeda-Ojeda M., Escobar-Morreale H.F. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum. Reprod. Update. 2013;19(3):268–288.
    1. Wagner Z., Molnár M., Molnár G.A., Tamaskó M., Laczy B., Wagner L., Csiky B., Heidland A., Nagy J., Wittmann I. Serum carboxymethyllysine predicts mortality in hemodialysis patients. Am. J. Kidney Dis. 2006;47(2):294–300.
    1. Tbahriti H.F., Kaddous A., Bouchenak M., Mekki K. Effect of different stages of chronic kidney disease and renal replacement therapies on oxidant-antioxidant balance in uremic patients. 2013.
    1. Shu L., Park J.L., Byun J., Pennathur S., Kollmeyer J., Shayman J.A. Decreased nitric oxide bioavailability in a mouse model of Fabry disease. J. Am. Soc. Nephrol. 2009;20(9):1975–1985.
    1. Brasnyó P., Molnár G.A., Mohás M., Markó L., Laczy B., Cseh J., Mikolás E., Szijártó I.A., Mérei A., Halmai R., Mészáros L.G., Sümegi B., Wittmann I. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr. 2011;106(3):383–389.
    1. Kun S., Mikolás E., Molnár G.A., Sélley E., Laczy B., Csiky B., Kovács T., Wittmann I. Association of plasma ortho-tyrosine/para-tyrosine ratio with responsiveness of erythropoiesis-stimulating agent in dialyzed patients. Redox Rep. 2014;19(5):190–198.
    1. Mikolás E., Kun S., Laczy B., Molnár G.A., Sélley E., Kőszegi T., Wittmann I. Incorporation of ortho- and meta-tyrosine into cellular proteins leads to erythropoietin-resistance in an erythroid cell line. Kidney Blood Press. Res. 2013;38(2-3):217–225.
    1. Szijártó I.A., Molnár G.A., Mikolás E., Fisi V., Laczy B., Gollasch M., Koller A., Wittmann I. Increase in insulin-induced relaxation of consecutive arterial segments toward the periphery: Role of vascular oxidative state. Free Radic. Res. 2014;48(7):749–757.
    1. Szijártó I.A., Molnár G.A., Mikolás E., Fisi V., Cseh J., Laczy B., Kovács T., Böddi K., Takátsy A., Gollasch M., Koller A., Wittmann I. Elevated vascular level of ortho-tyrosine contributes to the impairment of insulin-induced arterial relaxation. Horm. Metab. Res. 2014;46(11):749–752.
    1. Wells-Knecht M.C., Huggins T.G., Dyer D.G., Thorpe S.R., Baynes J.W. Oxidized amino acids in lens protein with age. Measurement of o-tyrosine and dityrosine in the aging human lens. J. Biol. Chem. 1993;268(17):12348–12352.
    1. Harman D. Free radical theory of aging: an update: increasing the functional life span. Ann. N. Y. Acad. Sci. 2006;1067:10–21.
    1. Harman D. Extending functional life span. Exp. Gerontol. 1998;33(1-2):95–112.
    1. Sélley E., Kun S., Kürthy M., Kovács T., Wittmann I., Molnár G.A. Para-tyrosine supplementation improves insulin- and liraglutide-induced vasorelaxation in cholesterol-fed rats. Protein Pept. Lett. 2015;22(8):736–742.
    1. Ruggiero R.A., Bruzzo J., Chiarella P., di Gianni P., Isturiz M.A., Linskens S., Speziale N., Meiss R.P., Bustuoabad O.D., Pasqualini C.D. Tyrosine isomers mediate the classical phenomenon of concomitant tumor resistance. Cancer Res. 2011;71(22):7113–7124.
    1. Ruggiero R.A., Bruzzo J., Chiarella P., Bustuoabad O.D., Meiss R.P., Pasqualini C.D. Concomitant tumor resistance: the role of tyrosine isomers in the mechanisms of metastases control. Cancer Res. 2012;72(5):1043–10450.
    1. Machuca D., Chiarella P., Montagna D., Dran G., Meiss R.P., Ruggiero R.A. Meta-tyrosine. A powerful anti-metastatic factor with undetectable toxic-side effects. Medicina (B. Aires) 2015;75(1):1–5.
    1. Gurer-Orhan H., Ercal N., Mare S., Pennathur S., Orhan H., Heinecke J.W. Misincorporation of free m-tyrosine into cellular proteins: a potential cytotoxic mechanism for oxidized amino acids. Biochem. J. 2006;395(2):277–284.
    1. Hiroi M., Ogihara T., Hirano K., Hasegawa M., Morinobu T., Tamai H., Niki E. Regulation of apoptosis by glutathione redox state in PC12 cells exposed simultaneously to iron and ascorbic acid. Free Radic. Biol. Med. 2005;38(8):1057–1072.
    1. Huycke M.M., Moore D.R. In vivo production of hydroxyl radical by Enterococcus faecalis colonizing the intestinal tract using aromatic hydroxylation. Free Radic. Biol. Med. 2002;33(6):818–826.
    1. Pennathur S., Wagner J.D., Leeuwenburgh C., Litwak K.N., Heinecke J.W. A hydroxyl radical-like species oxidizes cynomolgus monkey artery wall proteins in early diabetic vascular disease. J. Clin. Invest. 2001;107(7):853–860.
    1. Leeuwenburgh C., Hansen P.A., Holloszy J.O., Heinecke J.W. Hydroxyl radical generation during exercise increases mitochondrial protein oxidation and levels of urinary dityrosine. Free Radic. Biol. Med. 1999;27(1-2):186–192.
    1. Molnar G.A. Pathogenesis of the Chronic Complications of Type 2 Diabetes Mellitus, Chronic Kidney Disease and Ageing. The Role of Oxidative Stress, Endothelial Dysfunction and the Renin-Angiotensin System. 2007.
    1. Solar S. Reaction of OH with phenylalanine in neutral aqueous solution. Radiat. Phys. Chem. (1977) 1985;26(1):103–108.
    1. Fisher S.C., Schoonen M.A., Brownawell B.J. Phenylalanine as a hydroxyl radical-specific probe in pyrite slurries. Geochem. Trans. 2012;13:3.

Source: PubMed

3
Iratkozz fel