Genetic determinants of swallowing impairment, recovery and responsiveness to treatment

Alicja Raginis-Zborowska, Neil Pendleton, Shaheen Hamdy, Alicja Raginis-Zborowska, Neil Pendleton, Shaheen Hamdy

Abstract

Purpose of review: Here we review the latest literature and evidence in the field of genetics and determinants of swallowing and its treatments-specifically, this is a very recent concept in the field of oropharyngeal dysphagia, with only now an emerging research interest in the relationship between our genetic makeup and the effect this has on swallowing function and dysfunction. As such our review will look at preclinical, clinical and hypothesis generating research covering all aspects of the genetics of swallowing, giving new importance to the genotype-phenotype influences pertaining to dysphagia and its recovery.

Recent findings: There appear to be a number of candidate gene systems that interact with swallowing or its neurophysiology, which include brain-derived neurotrophic factor, apolipoprotein E and catechol-O-methyltransferase, that have been shown to impact on either swallowing function or the brain's ability to respond to neurostimulation and induce plasticity. In addition, a number of genetic disorders, where dysphagia is a clinical phenomenon, have given us clues as to how multiple genes or the polygenetics of dysphagia might interact with our swallowing phenotype.

Summary: There is currently limited research in the field of genetic factors that influence (human) swallowing and oropharyngeal dysphagia, but this is an emerging science and one which, in the future, may herald a new era in precision medicine and better targeting of therapies for dysphagia based on an individual's genetic makeup.

Keywords: Dysphagia; Genes; Polymorphism; Swallowing.

Conflict of interest statement

Compliance with Ethics Guidelines Conflict of Interest Alicja Raginis-Zborowska, Neil Pendleton, and Shaheen Hamdy declare that they have no conflict of interest. Human and Animal Rights and Informed Consent This article does not contain any studies with human or animal subjects performed by any of the authors.

References

    1. Park YH, et al. Prevalence and associated factors of dysphagia in nursing home residents. Geriatr Nurs. 2013;34(3):212–217. doi: 10.1016/j.gerinurse.2013.02.014.
    1. Groher, M.E. and M.A. Crary, Dysphagia. Clinical Management In Adults and Children. 2010: Elsevier Mosby.
    1. Kalf JG, et al. Prevalence of oropharyngeal dysphagia in Parkinson’s disease: a meta-analysis. Parkinsonism Relat Disord. 2012;18(4):311–315. doi: 10.1016/j.parkreldis.2011.11.006.
    1. Barer DH. The natural history and functional consequences of dysphagia after hemispheric stroke. J Neurol Neurosurg Psychiatry. 1989;52(2):236–241. doi: 10.1136/jnnp.52.2.236.
    1. Baroni AF, Fábio SR, Dantas RO. Risk factors for swallowing dysfunction in stroke patients. Arq Gastroenterol. 2012;49(2):118–124. doi: 10.1590/S0004-28032012000200005.
    1. Martino R, et al. Dysphagia after stroke: incidence, diagnosis, and pulmonary complications. Stroke. 2005;36(12):2756–2763. doi: 10.1161/01.STR.0000190056.76543.eb.
    1. Singh S, Hamdy S. Dysphagia in stroke patients. Postgrad Med J. 2006;82(968):383–391. doi: 10.1136/pgmj.2005.043281.
    1. Kidambi T, et al. Temporal trends in the relative prevalence of dysphagia etiologies from 1999-2009. World J Gastroenterol. 2012;18(32):4335–4341. doi: 10.3748/wjg.v18.i32.4335.
    1. Kim L, et al. Effect of repetitive transcranial magnetic stimulation on patients with brain injury and Dysphagia. Ann Rehabil Med. 2011;35(6):765–771. doi: 10.5535/arm.2011.35.6.765.
    1. Glazier AM, Nadeau JH, Aitman TJ. Finding genes that underlie complex traits. Science. 2002;298(5602):2345–2349. doi: 10.1126/science.1076641.
    1. Missitzi J, et al. Plasticity in human motor cortex is in part genetically determined. J Physiol. 2011;589(Pt 2):297–306. doi: 10.1113/jphysiol.2010.200600.
    1. Gow D, et al. Induction of long-term plasticity in human swallowing motor cortex following repetitive cortical stimulation. Clin Neurophysiol. 2004;115(5):1044–1051. doi: 10.1016/j.clinph.2003.12.001.
    1. Jefferson S, et al. Reversal of a virtual lesion in human pharyngeal motor cortex by high frequency contralesional brain stimulation. Gastroenterology. 2009;137(3):841–849. doi: 10.1053/j.gastro.2009.04.056.
    1. Jayasekeran V, et al. Val66Met in brain-derived neurotrophic factor affects stimulus-induced plasticity in the human pharyngeal motor cortex. Gastroenterology. 2011;141(3):827–836. doi: 10.1053/j.gastro.2011.05.047.
    1. Mistry S, et al. Unilateral suppression of pharyngeal motor cortex to repetitive transcranial magnetic stimulation reveals functional asymmetry in the hemispheric projections to human swallowing. J Physiol. 2007;585(Pt 2):525–538. doi: 10.1113/jphysiol.2007.144592.
    1. Khedr EM, Abo-Elfetoh N, Rothwell JC. Treatment of post-stroke dysphagia with repetitive transcranial magnetic stimulation. Acta Neurol Scand. 2009;119(3):155–161. doi: 10.1111/j.1600-0404.2008.01093.x.
    1. Lee JH, et al. Effect of repetitive transcranial magnetic stimulation according to the stimulation site in stroke patients with dysphagia. Ann Rehabil Med. 2015;39(3):432–439. doi: 10.5535/arm.2015.39.3.432.
    1. Lim KB, et al. Effect of low-frequency rTMS and NMES on subacute unilateral hemispheric stroke with dysphagia. Ann Rehabil Med. 2014;38(5):592–602. doi: 10.5535/arm.2014.38.5.592.
    1. Michou E, et al. Characterizing the mechanisms of central and peripheral forms of neurostimulation in chronic dysphagic stroke patients. Brain Stimul. 2014;7(1):66–73. doi: 10.1016/j.brs.2013.09.005.
    1. Park JW, et al. The effect of 5 Hz high-frequency rTMS over contralesional pharyngeal motor cortex in post-stroke oropharyngeal dysphagia: a randomized controlled study. Neurogastroenterol Motil. 2013;25(4):324-e250. doi: 10.1111/nmo.12063.
    1. Verin E, Leroi AM. Poststroke dysphagia rehabilitation by repetitive transcranial magnetic stimulation: a noncontrolled pilot study. Dysphagia. 2009;24(2):204–210. doi: 10.1007/s00455-008-9195-7.
    1. Qin L, et al. An adaptive role for BDNF Val66Met polymorphism in motor recovery in chronic stroke. J Neurosci. 2014;34(7):2493–2502. doi: 10.1523/JNEUROSCI.4140-13.2014.
    1. Cheeran B, et al. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Physiol. 2008;586(Pt 23):5717–5725. doi: 10.1113/jphysiol.2008.159905.
    1. Hwang, J.M., et al., Different responses to facilitatory rTMS according to BDNF genotype. Clin Neurophysiol, 2014.
    1. Kleim JA, et al. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci. 2006;9(6):735–737. doi: 10.1038/nn1699.
    1. Voti Li, et al. Correlation between cortical plasticity, motor learning and BDNF genotype in healthy subjects. Exp Brain Res. 2011;212(1):91–99. doi: 10.1007/s00221-011-2700-5.
    1. Ziegler A, Konig IR. A statistical approach to genetic epidemiology. 2. Weinheim: Wiley; 2012.
    1. Vasant DH, et al. The val66met polymorphism of brain-derived neurotrophic factor is associated with human esophageal hypersensitivity. Neurogastroenterol Motil. 2013;25(2):162-e85. doi: 10.1111/nmo.12021.
    1. Essa H, et al. PTU-182 Can response to pharyngeal stimulation in dysphagic stroke be predicted by bdnf genetic polymorphisms? Gut. 2015;64:A143. doi: 10.1136/gutjnl-2015-309861.297.
    1. Mentz, H., et al., Homozygosity in the ApoE 4 polymorphism is associated with dysphagic symptoms in older adults. Dis Esophagus, 2013.
    1. Bour AM, et al. The effect of the APOE-epsilon4 allele and ACE-I/D polymorphism on cognition during a two-year follow-up in first-ever stroke patients. Dement Geriatr Cogn Disord. 2010;29(6):534–542. doi: 10.1159/000314678.
    1. Liu CC, et al. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9(2):106–118. doi: 10.1038/nrneurol.2012.263.
    1. Schiepers OJ, et al. APOE E4 status predicts age-related cognitive decline in the ninth decade: longitudinal follow-up of the Lothian Birth Cohort 1921. Mol Psychiatry. 2012;17(3):315–324. doi: 10.1038/mp.2010.137.
    1. Krubitzer L, Campi KL, Cooke DF. All rodents are not the same: a modern synthesis of cortical organization. Brain Behav Evol. 2011;78(1):51–93. doi: 10.1159/000327320.
    1. Soler-Alfonso C, et al. Potocki-Lupski syndrome: a microduplication syndrome associated with oropharyngeal dysphagia and failure to thrive. J Pediatr. 2011;158(4):655–659. doi: 10.1016/j.jpeds.2010.09.062.
    1. Raginis-Zborowska A, et al. Genetic determinants of swallowing impairments among community dwelling older population. Exp Gerontol. 2015;69:196–201. doi: 10.1016/j.exger.2015.06.014.
    1. Spencer CC, et al. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet. 2009;5(5):e1000477. doi: 10.1371/journal.pgen.1000477.
    1. Kurihara LJ, et al. Loss of Uch-L1 and Uch-L3 leads to neurodegeneration, posterior paralysis and dysphagia. Hum Mol Genet. 2001;10(18):1963–1970. doi: 10.1093/hmg/10.18.1963.
    1. Grant LM, et al. Evidence for early and progressive ultrasonic vocalization and oromotor deficits in a PINK1 gene knockout rat model of Parkinson’s disease. J Neurosci Res. 2015;93(11):1713–1727. doi: 10.1002/jnr.23625.
    1. Bariohay B, et al. BDNF-TrkB signaling interacts with the GABAergic system to inhibit rhythmic swallowing in the rat. Am J Physiol Regul Integr Comp Physiol. 2008;295(4):R1050–R1059. doi: 10.1152/ajpregu.90407.2008.
    1. Schaser AJ, et al. The effect of age and tongue exercise on BDNF and TrkB in the hypoglossal nucleus of rats. Behav Brain Res. 2012;226(1):235–241. doi: 10.1016/j.bbr.2011.09.027.
    1. Félix B, Jean A, Roman C. Leptin inhibits swallowing in rats. Am J Physiol Regul Integr Comp Physiol. 2006;291(3):R657–R663. doi: 10.1152/ajpregu.00560.2005.
    1. Tsujimura T, et al. Involvement of ERK phosphorylation in brainstem neurons in modulation of swallowing reflex in rats. J Physiol. 2009;587(Pt 4):805–817. doi: 10.1113/jphysiol.2008.165324.
    1. Corona-Rivera JR, et al. Abnormal oral-pharyngeal swallowing as cause of morbidity and early death in Stuve-Wiedemann syndrome. Eur J Med Genet. 2009;52(4):242–246. doi: 10.1016/j.ejmg.2009.04.001.
    1. Dagoneau N, et al. Null leukemia inhibitory factor receptor (LIFR) mutations in Stu¨ve-Wiedemann/Schwartz-Jampel type 2 syndrome. J Pediatr. 2004;74(2):298–305.
    1. Hartshorne TS, Grialou TL, Parker KR. Autistic-like behavior in CHARGE syndrome. Am J Med Genet A. 2005;133A(3):257–261. doi: 10.1002/ajmg.a.30545.
    1. Harold, C., Atlas of genetic diagnosis and counseling, 2012.
    1. Eicher PS, et al. Dysphagia in children with a 22q11.2 deletion: unusual pattern found on modified barium swallow. J Pediatr. 2000;137(2):158–164. doi: 10.1067/mpd.2000.105356.
    1. Karpinski BA, et al. Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome. Dis Model Mech. 2014;7(2):245–257. doi: 10.1242/dmm.012484.
    1. Nimmons D, et al. A novel association between COMT and BDNF gene polymorphisms and likelihood of symptomatic dysphagia in older people. Neurogastroenterol Motil. 2015;27(9):1223–1231. doi: 10.1111/nmo.12609.

Source: PubMed

3
Iratkozz fel