PROPENSIX: pressure garment therapy using compressive dynamic Lycra® sleeve to improve bi-manual performance in unilateral cerebral palsy: a multicenter randomized controlled trial protocol

A Gerard, M Toussaint-Thorin, Y Mohammad, G Letellier, S Fritot, S Masson, A Duhamel, C Donskoff, Y Zagame, L Beghin, L Gottrand, A Gerard, M Toussaint-Thorin, Y Mohammad, G Letellier, S Fritot, S Masson, A Duhamel, C Donskoff, Y Zagame, L Beghin, L Gottrand

Abstract

Background: Upper limb impairment affects activity and participation in children with unilateral cerebral palsy (UCP). Pressure garment therapy (PGT) using compressive dynamic Lycra® garments is an innovative intervention proposed for the management of cerebral palsy consequences. The PROPENSIX study aims to evaluate the efficacy of a therapy using a Lycra® sleeve as compared to a placebo sleeve to improve bi-manual performance measured by the Assisting Hand Assessment (AHA) in children with unilateral cerebral palsy.

Methods: The PROPENSIX trial is a multicenter, prospective, placebo-controlled, double-blinded, randomized study. One hundred children with UCP, aged from 5 to 10, are randomly assigned as soon as they are recruited in a 1:1 ratio to perform usual daily activities, especially activities involving bimanual performances, with Lycra® sleeve or placebo sleeve during 6 months. The primary endpoint is the change in bimanual performance from inclusion to 6 months, evaluated by AHA. The secondary endpoints evaluate changes from inclusion to 6 months in other dimensions of the International Classification of Functioning (ICF), upper limb movement capacity assessed by Quality of Upper Extremity Skill Test (QUEST), and health-related quality of life evaluated by Pediatric Quality of Life Inventory 3.0 Cerebral Palsy Module (PedsQLTM 3.0 CP Module) and in body structures and functions domain assessed by neuro-orthopedic examination and somatosensory evoked potentials (SEP).

Discussion: The PROPENSIX study is the largest randomized controlled trial (RCT) aiming to evaluate the efficacy of a PGT using compressive dynamic Lycra® sleeve in UCP. Enhancement of children's bimanual performance at the end of the 6 months wear of the Lycra® sleeve should improve evidence regarding this type of treatment and expand discussion about their recommendation in clinical practice. Data from secondary outcomes assessments should bring interesting arguments to discuss the Lycra® sleeve action on mobility, tonus, and sensory impairments in children with unilateral cerebral palsy.

Trial registration: ClinicalTrials.gov NCT02086214 . Retrospectively registered on March 13, 2014 TRIAL STATUS: Study start data: December 2012. Recruitment status: completed. Primary completion date: April 2021. Estimated study completion date: December 2022. Protocol version 10 (date: February 2018).

Keywords: Bimanual performance; Cerebral palsy; Children; Compressive dynamic Lycra® sleeve; Orthotic device; Placebo; Pressure garment therapy; Randomized controlled trial; Splint; Upper limb.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
A child wearing a Lycra® sleeve while playing
Fig. 2
Fig. 2
Experimental design. AHA, Assisting Hand Assessment

References

    1. Oskoui M, Coutinho F, Dykeman J, Jetté N, Pringsheim T. An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2013;55(6):509–519. doi: 10.1111/dmcn.12080.
    1. Stanley F, Blair E, Alberman E. Cerebral palsies: epidemiology and causal pathways. London: Mac Keith Press; 2000.
    1. Fedrizzi E, Pagliano E, Andreucci E. Hand function in children with hemiplegic cerebral palsy: prospective follow-up and functional outcome in adolescence. Dev Med Child Neurol. 2003;45(2):85–91. doi: 10.1111/j.1469-8749.2003.tb00910.x.
    1. Bleyenheuft Y, Gordon AM. Precision grip control, sensory impairments and their interactions in children with hemiplegic cerebral palsy: a systematic review. Res Dev Disabil. 2013;34(9):3014–3028. doi: 10.1016/j.ridd.2013.05.047.
    1. Krumlinde-Sundholm L, Eliasson A-C. Comparing tests of tactile sensibility: aspects relevant to testing children with spastic hemiplegia. Dev Med Child Neurol. 2002;44(9):604–612. doi: 10.1111/j.1469-8749.2002.tb00845.x.
    1. Wingert JR, Burton H, Sinclair RJ, Brunstrom JE, Damiano DL. Tactile sensory abilities in cerebral palsy: deficits in roughness and object discrimination. Dev Med Child Neurol. nov. 2008;50(11):832–838. doi: 10.1111/j.1469-8749.2008.03105.x.
    1. Gordon AM, Duff SV. Relation between clinical measures and fine manipulative control in children with hemiplegic cerebral palsy. Dev Med Child Neurol. 1999;41(9):586–591. doi: 10.1017/S0012162299001231.
    1. Matusz PJ, Key AP, Gogliotti S, Pearson J, Auld ML, Murray MM, et al. Somatosensory plasticity in pediatric cerebral palsy following constraint-induced movement therapy. Cheron G, éditeur. Neural Plast. 2018;2018:1891978. doi: 10.1155/2018/1891978.
    1. Hoon AH, Jr, Stashinko EE, Nagae LM, Lin DD, Keller J, Bastian A, et al. Sensory and motor deficits in children with cerebral palsy born preterm correlate with diffusion tensor imaging abnormalities in thalamocortical pathways. Dev Med Child Neurol. 2009;51(9):697–704. doi: 10.1111/j.1469-8749.2009.03306.x.
    1. Kurz MJ, Becker KM, Heinrichs-Graham E, Wilson TW. Children with cerebral palsy have uncharacteristic somatosensory cortical oscillations after stimulation of the hand mechanoreceptors. Neuroscience. 2015;305:67–75. doi: 10.1016/j.neuroscience.2015.07.072.
    1. Novak I, Morgan C, Adde L, Blackman J, Boyd RN, Brunstrom-Hernandez J, et al. Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment. JAMA Pediatr. 2017;171(9):897–907. doi: 10.1001/jamapediatrics.2017.1689.
    1. Novak I, Mcintyre S, Morgan C, Campbell L, Dark L, Morton N, et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol. 2013;55(10):885–910. 10.1111/dmcn.12246.
    1. Jackman M, Novak I, Lannin N. Effectiveness of hand splints in children with cerebral palsy: a systematic review with meta-analysis. Dev Med Child Neurol. 2014;56(2):138–147. doi: 10.1111/dmcn.12205.
    1. Shierk A, Lake A, Haas T. Review of therapeutic interventions for the upper limb classified by manual ability in children with cerebral palsy. Semin Plast Surg. 2016;30(1):14–23. doi: 10.1055/s-0035-1571256.
    1. Morris C, Bowers R, Ross K, Stevens P, Phillips D. Orthotic management of cerebral palsy: recommendations from a consensus conference. NeuroRehabilitation. 2011;28(1):37–46. doi: 10.3233/NRE-2011-0630.
    1. Gracies J-M, Marosszeky JE, Renton R, Sandanam J, Gandevia SC, Burke D. Short-term effects of dynamic Lycra splints on upper limb in hemiplegic patients. Arch Phys Med Rehabil. 2000;81(12):1547–1555. doi: 10.1053/apmr.2000.16346.
    1. Gracies J-M, Fitzpatrick R, Wilson L, Burke D, Gandevia SC. Lycra garments designed for patients with upper limb spasticity: mechanical effects in normal subjects. Arch Phys Med Rehabil. 1997;78(10):1066–1071. doi: 10.1016/S0003-9993(97)90129-5.
    1. Blair E, Ballantyne J, Horsman S, Chauvel P. A study of a dynamic proximal stability splint in the management of children with cerebral palsy. Dev Med Child Neurol. 1995;37(6):544–554. doi: 10.1111/j.1469-8749.1995.tb12041.x.
    1. Semenova KA. Basis for a method of dynamic proprioceptive correction in the restorative treatment of patients with residual-stage infantile cerebral palsy. Neurosci Behav Physiol. 1997;27(6):639–643. doi: 10.1007/BF02461920.
    1. Hylton N, Allen C. The development and use of SPIO Lycra compression bracing in children with neuromotor deficits. Pediatr Rehabil. 1997;1(2):109–116. doi: 10.3109/17518429709025853.
    1. Bailes AF, Greve K, Schmitt LC. Changes in two children with cerebral palsy after intensive suit therapy: a case report. Pediatr Phys Ther. 2010;22(1):76–85. doi: 10.1097/PEP.0b013e3181cbf224.
    1. Elliott CM, Reid SL, Alderson JA, Elliott BC. Lycra arm splints in conjunction with goal-directed training can improve movement in children with cerebral palsy. NeuroRehabilitation. 2011;28(1):47–54. doi: 10.3233/NRE-2011-0631.
    1. Elliott C, Reid S, Hamer P, Alderson J, Elliott B. Lycra(®) arm splints improve movement fluency in children with cerebral palsy. Gait Posture. 2011;33(2):214–219. doi: 10.1016/j.gaitpost.2010.11.008.
    1. Ulkar B. Effect of positioning and bracing on passive position sense of shoulder joint. Br J Sports Med. 2004;38(5):549–552. doi: 10.1136/bjsm.2002.004275.
    1. database. Pressure therapy in the treatment of upper arm of cerebral palsy children. . Accessed 29 Dec 2021
    1. Sakzewski L, Ziviani J, Boyd R. Systematic review and meta-analysis of therapeutic management of upper-limb dysfunction in children with congenital hemiplegia. Pediatrics. 2009;123(6):e1111–e1122. doi: 10.1542/peds.2008-3335.
    1. Gordon AM, Schneider JA, Chinnan A, Charles JR. Efficacy of a hand–arm bimanual intensive therapy (HABIT) in children with hemiplegic cerebral palsy: a randomized control trial. Dev Med Child Neurol. 2007;49(11):830–838. doi: 10.1111/j.1469-8749.2007.00830.x.
    1. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–223. doi: 10.1111/j.1469-8749.1997.tb07414.x.
    1. Eliasson A-C, Krumlinde-Sundholm L, Rösblad B, Beckung E, Arner M, Öhrvall A-M, et al. The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48(7):549–554. doi: 10.1017/S0012162206001162.
    1. Rosenbaum P, Eliasson A-C, Hidecker MJC, Palisano RJ. Classification in childhood disability: focusing on function in the 21st century. J Child Neurol. 2014;29(8):1036–1045. doi: 10.1177/0883073814533008.
    1. Krumlinde-sundholm L, Eliasson A. Development of the assisting hand assessment: a Rasch-built measure intended for children with unilateral upper limb impairments. Scand J Occup Ther. 2003;10(1):16–26. doi: 10.1080/11038120310004529.
    1. Krumlinde-Sundholm L. Reporting outcomes of the assisting hand assessment: what scale should be used? Dev Med Child Neurol. 2012;54(9):807–808. doi: 10.1111/j.1469-8749.2012.04361.x.
    1. Holmefur M, Krumlinde-Sundholm L, Eliasson A-C. Interrater and intrarater reliability of the assisting hand assessment. Am J Occup Ther. 2007;61(1):79–84. doi: 10.5014/ajot.61.1.79.
    1. Krumlinde-Sundholm L, Holmefur M, Kottorp A, Eliasson A-C. The assisting hand assessment: current evidence of validity, reliability, and responsiveness to change. Dev Med Child Neurol. 2007;49(4):259–264. doi: 10.1111/j.1469-8749.2007.00259.x.
    1. DeMatteo C, Law M, Russell D, Pollock N, Rosenbaum P, Walter S. QUEST: quality of upper extremity skills test manual. Hamilton: Chedokee-McMasters Hospital; 1992. . Accessed 29 Dec 2021
    1. DeMatteo C, Law M, Russell D, Pollock N, Rosenbaum P, Walter S. The reliability and validity of the quality of upper extremity skills test. Phys Occup Ther Pediatr. 1993;13(2):1–18. doi: 10.1080/J006v13n02_01.
    1. Haga N, van der Heijden-Maessen HC, van Hoorn JF, Boonstra AM, Hadders-Algra M. Test-retest and inter- and intrareliability of the quality of the upper-extremity skills test in preschool-age children with cerebral palsy. Arch Phys Med Rehabil. 2007;88(12):1686–1689. doi: 10.1016/j.apmr.2007.07.030.
    1. Klingels K, Cock PD, Desloovere K, Huenaerts C, Molenaers G, Nuland IV, et al. Comparison of the Melbourne assessment of unilateral upper limb function and the quality of upper extremity skills test in hemiplegic CP. Dev Med Child Neurol. 2008;50(12):904–909. doi: 10.1111/j.1469-8749.2008.03123.x.
    1. Thorley M, Lannin N, Cusick A, Novak I, Boyd R. Reliability of the quality of upper extremity skills test for children with cerebral palsy aged 2 to 12 years. Phys Occup Ther Pediatr. 2012;32(1):4–21. doi: 10.3109/01942638.2011.602389.
    1. Sorsdahl AB, Moe-Nilssen R, Strand LI. Observer reliability of the gross motor performance measure and the quality of upper extremity skills test, based on video recordings. Dev Med Child Neurol. 2008;50(2):146–151. doi: 10.1111/j.1469-8749.2007.02023.x.
    1. Varni JW, Seid M, Rode CA. The PedsQL: measurement model for the pediatric quality of life inventory. Med Care. 1999;37(2):126–139. doi: 10.1097/00005650-199902000-00003.
    1. Auld ML, Ware RS, Boyd RN, Moseley GL, Johnston LM. Reproducibility of tactile assessments for children with unilateral cerebral palsy. Phys Occup Ther Pediatr. 2012;32(2):151–166. doi: 10.3109/01942638.2011.652804.
    1. Bégaud B, Evreux JC, Jouglard J, Lagier G. Imputation of the unexpected or toxic effects of drugs. Actualization of the method used in France. Therapie. 1985;40(2):111–118.
    1. Medical Z corporation. Vêtements postopératoires pour la chirurgie plastique, esthétique et brulés. . Accessed 29 Dec 2021
    1. D’Agostino RB, Massaro JM, Sullivan LM. Non-inferiority trials: design concepts and issues – the encounters of academic consultants in statistics. Stat Med. 2003;22(2):169–186. doi: 10.1002/sim.1425.
    1. Liang K-Y, Zeger SL. Longitudinal data analysis of continuous and discrete responses for pre-post designs. Sankhyā Indian J Stat Ser B (1960-2002) 2000;62(1):134–148.
    1. Kenward MG, White IR, Carpenter JR. Should baseline be a covariate or dependent variable in analyses of change from baseline in clinical trials? by G. F. Liu, K. Lu, R. Mogg, M. Mallick and D. V. Mehrotra, Statistics in Medicine 2009; 28:2509-2530. Stat Med. 2010;29(13):1455–1456. doi: 10.1002/sim.3868.
    1. Vickers AJ. Parametric versus non-parametric statistics in the analysis of randomized trials with non-normally distributed data. BMC Med Res Methodol. 2005;5:35. doi: 10.1186/1471-2288-5-35.
    1. Vickers AJ, Altman DG. Statistics notes: missing outcomes in randomised trials. BMJ. 2013;346(jun06 2):f3438. doi: 10.1136/bmj.f3438.
    1. van Buuren S, Groothuis-Oudshoorn K. MICE: Multivariate imputation by chained equations in R. J Stat Softw 2011;45(3).
    1. Rubin DB, editor. Multiple Imputation for nonresponse in surveys [Internet]. Hoboken: Wiley; 1987. . Accessed 29 Dec 2021
    1. Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. doi: 10.1136/bmj.b2393.
    1. Almeida KM, Fonseca ST, Figueiredo PRP, Aquino AA, Mancini MC. Effects of interventions with therapeutic suits (clothing) on impairments and functional limitations of children with cerebral palsy: a systematic review. Braz J Phys Ther. 2017;21(5):307–320. doi: 10.1016/j.bjpt.2017.06.009.
    1. Martins E, Cordovil R, Oliveira R, Letras S, Lourenço S, Pereira I, et al. Efficacy of suit therapy on functioning in children and adolescents with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2015;58(4):348–60. 10.1111/dmcn.12988.
    1. International Committee of Medical Journal Editors (16 December 2014) Recommendations for the Conduct, reporting, editing, and publication of scholarly work in medical journals. roles-and-responsibilities. Accessed 29 Dec 2021

Source: PubMed

3
Iratkozz fel