Efficacy, Treatment Characteristics, and Biopsychological Mechanisms of Music-Listening Interventions in Reducing Pain (MINTREP): Study Protocol of a Three-Armed Pilot Randomized Controlled Trial

Anja C Feneberg, Mattes B Kappert, Rosa M Maidhof, Bettina K Doering, Dieter Olbrich, Urs M Nater, Anja C Feneberg, Mattes B Kappert, Rosa M Maidhof, Bettina K Doering, Dieter Olbrich, Urs M Nater

Abstract

Background: Pain can severely compromise a person's overall health and well-being. Music-listening interventions have been shown to alleviate perceived pain and to modulate the body's stress-sensitive systems. Despite the growing evidence of pain- and stress-reducing effects of music-listening interventions from experimental and clinical research, current findings on music-induced analgesia are inconclusive regarding the role of specific treatment characteristics and the biopsychological mechanisms underlying these effects. Objective: The overall aim of this pilot randomized controlled trial is to test and compare the differential effects of frequency-modulated and unmodulated music (both researcher-selected) on experimentally induced perception of acute pain and to test the efficacy of the interventions in reducing biological and subjective stress levels. Moreover, these two interventions will be compared to a third condition, in which participants listen to self-selected unmodulated music. Methods and Analysis: A total of 90 healthy participants will be randomly allocated to one of the three music-listening intervention groups. Each intervention encompasses 10 sessions of music listening in our laboratory. Frequency-modulation will involve stepwise filtering of frequencies in the audible range of 50-4,000 Hz. Acute pain will be induced via the cold pressor test. Primary (i.e., pain tolerance, perceived pain intensity) and secondary (i.e., heart rate variability, electrodermal activity, hair cortisol, subjective stress) outcomes will be measured at baseline, post, and follow-up. In addition, intermittent measurements as well as a follow-up assessment and a range of tertiary measures (e.g., music-induced emotions) are included. Discussion: This is the first study to systematically test and compare the effects of music frequencies along with the control over music selection, both of which qualify as central treatment characteristics of music-listening interventions. Results will be highly informative for the design of subsequent large-scale clinical trials and provide valuable conclusions for the implementation of music-listening interventions for the reduction of perceived pain. Clinical Trial Registration: Clinical Trials Database of the U.S. National Library of Medicine: Identifier NCT02991014.

Keywords: autonomic nervous system; cold pressor test; music; music intervention; music-induced analgesia; pain management; stress reduction.

Copyright © 2020 Feneberg, Kappert, Maidhof, Doering, Olbrich and Nater.

Figures

Figure 1
Figure 1
Study flow diagram.
Figure 2
Figure 2
Protocol and timeline for study appointments: (A) baseline, post, and follow-up, (B) music-listening sessions 1, 3, 6, and 10.

References

    1. Ferrell BR. The impact of pain on quality of life. A decade of research. Nurs Clin North Am. (1995) 30:609–24.
    1. Mantyh PW. Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci. (2006) 7:797–809. 10.1038/nrn1914
    1. International Association for the Study of Pain . Classification of Chronic Pain: Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms. Seattle, WA: IASP Press; (1994).
    1. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators . Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. (2017) 390:1211–59. 10.1016/S0140-6736(17)32154-2
    1. Phillips CJ. The cost and burden of chronic pain. Rev Pain. (2009) 3:2–5. 10.1177/204946370900300102
    1. Goldberg DS, McGee SJ. Pain as a global public health priority. BMC Public Health. (2011) 11:770. 10.1186/1471-2458-11-770
    1. van Hecke O, Torrance N, Smith BH. Chronic pain epidemiology and its clinical relevance. Br J Anaesth. (2013) 111:13–8. 10.1093/bja/aet123
    1. Mills SEE, Nicolson KP, Smith BH. Chronic pain: a review of its epidemiology and associated factors in population-based studies. Br J Anaesth. (2019) 123:273–83. 10.1016/j.bja.2019.03.023
    1. Bernatzky G, Presch M, Anderson M, Panksepp J. Emotional foundations of music as a non-pharmacological pain management tool in modern medicine. Neurosci Biobehav Rev. (2011) 35:1989–99. 10.1016/j.neubiorev.2011.06.005
    1. Lunde SJ, Vuust P, Garza-Villarreal EA, Vase L. Music-induced analgesia: how does music relieve pain? Pain. (2019) 160:989–93. 10.1097/j.pain.0000000000001452
    1. Cepeda MS, Carr DB, Lau J, Alvarez H. Music for pain relief. Cochrane Database Syst Rev. (2006) 2:CD004843. 10.1002/14651858.CD004843.pub2
    1. Hole J, Hirsch M, Ball E, Meads C. Music as an aid for postoperative recovery in adults: a systematic review and meta-analysis. Lancet. (2015) 386:1659–71. 10.1016/S0140-6736(15)60169-6
    1. Neil MJ, Macrae WA. Post surgical pain- the transition from acute to chronic pain. Rev Pain. (2009) 3:6–9. 10.1177/204946370900300203
    1. Garza-Villarreal EA, Pando V, Vuust P, Parsons C. Music-induced analgesia in chronic pain conditions: a systematic review and meta-analysis. Pain Phys. (2017) 20:597–610. 10.1101/105148
    1. Bradt J, Dileo C, Grocke D, Magill L. Music interventions for improving psychological and physical outcomes in cancer patients. Cochrane Database Syst Rev. (2011) 8:CD006911. 10.1002/14651858.CD006911.pub2
    1. Gao Y, Wei Y, Yang W, Jiang L, Li X, Ding J, et al. . The effectiveness of music therapy for terminally Ill patients: a meta-analysis and systematic review. J Pain Symptom Manage. (2019) 57:319–29. 10.1016/j.jpainsymman.2018.10.504
    1. Kühlmann AYR, Rooij A, de, Kroese LF, van Dijk M, Hunink MGM, Jeekel J. Meta-analysis evaluating music interventions for anxiety and pain in surgery. Br J Surg. (2018) 105:773–83. 10.1002/bjs.10853
    1. van der Heijden MJE, Oliai Araghi S, van Dijk M, Jeekel J, Hunink MGM. The effects of perioperative music interventions in pediatric surgery: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE. (2015) 10:e0133608. 10.1371/journal.pone.0133608
    1. Edens JL, Gil KM. Experimental induction of pain: utility in the study of clinical pain. Behav Ther. (1995) 26:197–216. 10.1016/S0005-7894(05)80102-9
    1. Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron. (2007) 55:377–91. 10.1016/j.neuron.2007.07.012
    1. Villemure C, Bushnell CM. Cognitive modulation of pain: how do attention and emotion influence pain processing? Pain. (2002) 95:195–9. 10.1016/S0304-3959(02)00007-6
    1. Wiech K, Ploner M, Tracey I. Neurocognitive aspects of pain perception. Trends Cogn Sci. (2008) 12:306–13. 10.1016/j.tics.2008.05.005
    1. Mitchell LA, MacDonald RAR, Knussen C, Serpell MG. A survey investigation of the effects of music listening on chronic pain. Psychol Music. (2007) 35:37–57. 10.1177/0305735607068887
    1. Mitchell LA, MacDonald RAR, Brodie EE. A comparison of the effects of preferred music, arithmetic and humour on cold pressor pain. Eur J Pain. (2006) 10:343–51. 10.1016/j.ejpain.2005.03.005
    1. Silvestrini N, Piguet V, Cedraschi C, Zentner MR. Music and auditory distraction reduce pain: emotional or attentional effects? Music Med. (2011) 3:264–70. 10.1177/1943862111414433
    1. Lundqvist L-O, Carlsson F, Hilmersson P, Juslin PN. Emotional responses to music: experience, expression, and physiology. Psychol Music. (2009) 37:61–90. 10.1177/0305735607086048
    1. Groarke JM, Groarke A, Hogan MJ, Costello L, Lynch D. Does listening to music regulate negative affect in a stressful situation? examining the effects of self-selected and researcher-selected music using both silent and active controls. Appl Psychol Health Well Being. (2020) 12:288–311. 10.1111/aphw.12185
    1. Juslin PN, Västfjäll D. Emotional responses to music: the need to consider underlying mechanisms. Behav Brain Sci. (2008) 31:559–75. 10.1017/S0140525X08005293
    1. Finlay KA, Anil K. Passing the time when in pain: investigating the role of musical valence. Psychomusicol. (2016) 26:56–66. 10.1037/pmu0000119
    1. Roy M, Peretz I, Rainville P. Emotional valence contributes to music-induced analgesia. Pain. (2008) 134:140–7. 10.1016/j.pain.2007.04.003
    1. Mitchell LA, MacDonald RAR. An experimental investigation of the effects of preferred and relaxing music listening on pain perception. J Music Ther. (2006) 43:295–316. 10.1093/jmt/43.4.295
    1. Dobek CE, Beynon ME, Bosma RL, Stroman PW. Music modulation of pain perception and pain-related activity in the brain, brain stem, and spinal cord: a functional magnetic resonance imaging study. J Pain. (2014) 15:1057–68. 10.1016/j.jpain.2014.07.006
    1. Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci. (2011) 14:257–62. 10.1038/nn.2726
    1. Mallik A, Chanda ML, Levitin DJ. Anhedonia to music and mu-opioids: evidence from the administration of naltrexone. Sci Rep. (2017) 7:41952. 10.1038/srep41952
    1. Ferreri L, Mas-Herrero E, Zatorre RJ, Ripollés P, Gomez-Andres A, Alicart H, et al. . Dopamine modulates the reward experiences elicited by music. Proc Natl Acad Sci USA. (2019) 116:3793–8. 10.1073/pnas.1811878116
    1. Leknes S, Tracey I. A common neurobiology for pain and pleasure. Nat Rev Neurosci. (2008) 9:314–20. 10.1038/nrn2333
    1. Thoma MV, Nater UM. The psychoneuroendocrinology of music effects in health. In: Costa A, Villalba E. editors. Horizons in Neuroscience Research. Hauppauge: Nova Science Publishers; (2011). p. 189–202.
    1. Linnemann A, Kappert MB, Fischer S, Doerr JM, Strahler J, Nater UM. The effects of music listening on pain and stress in the daily life of patients with fibromyalgia syndrome. Front Hum Neurosci. (2015) 9:434. 10.3389/fnhum.2015.00434
    1. Witte M, de, Spruit A, van Hooren S, Moonen X, Stams G-J. Effects of music interventions on stress-related outcomes: a systematic review and two meta-analyses. Health Psychol Rev. (2020) 14:294–324. 10.1080/17437199.2019.1627897
    1. Fancourt D, Ockelford A, Belai A. The psychoneuroimmunological effects of music: a systematic review and a new model. Brain Behav Immun. (2014) 3:615–26. 10.1016/j.bbi.2013.10.014
    1. Pelletier CL. The effect of music on decreasing arousal due to stress: a meta-analysis. J Music Ther. (2004) 41:192–214. 10.1093/jmt/41.3.192
    1. Finn S, Fancourt D. The biological impact of listening to music in clinical and nonclinical settings: a systematic review. Prog Brain Res. (2018) 237:173–200. 10.1016/bs.pbr.2018.03.007
    1. Wehrwein EA, Orer HS, Barman SM. Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Compr Physiol. (2016) 6:1239–78. 10.1002/cphy.c150037
    1. Bachmann P, Finke JB, Rebeck D, Zhang X, Larra MF, Koch KP, et al. . Test-retest reproducibility of a combined physical and cognitive stressor. Biol Psychol. (2019) 148:107729. 10.1016/j.biopsycho.2019.107729
    1. Benarroch EE. Pain-autonomic interactions: a selective review. Clin Auton Res. (2001) 11:343–9. 10.1007/BF02292765
    1. Mourot L, Bouhaddi M, Regnard J. Effects of the cold pressor test on cardiac autonomic control in normal subjects. Physiol Res. (2009) 58:83–91.
    1. Thomas BL, Claassen N, Becker P, Viljoen M. Validity of commonly used heart rate variability markers of autonomic nervous system function. Neuropsychobiology. (2019) 78:14–26. 10.1159/000495519
    1. Koenig J, Jarczok MN, Ellis RJ, Hillecke TK, Thayer JF. Heart rate variability and experimentally induced pain in healthy adults: a systematic review. Eur J Pain. (2014) 18:301–14. 10.1002/j.1532-2149.2013.00379.x
    1. Ziemssen T, Siepmann T. The investigation of the cardiovascular and sudomotor autonomic nervous system—a review. Front Neurol. (2019) 10:53. 10.3389/fneur.2019.00053
    1. Ellis RJ, Thayer JF. Music and autonomic nervous system (dys)function. Music Percept. (2010) 27:317–26. 10.1525/mp.2010.27.4.317
    1. Koelsch S, Jäncke L. Music and the heart. Eur Heart J. (2015) 36:3043–9. 10.1093/eurheartj/ehv430
    1. Koelsch S. Brain correlates of music-evoked emotions. Nat Rev Neurosci. (2014) 15:170–80. 10.1038/nrn3666
    1. Cotoia A, Dibello F, Moscatelli F, Sciusco A, Polito P, Modolo A, et al. . Effects of Tibetan music on neuroendocrine and autonomic functions in patients waiting for surgery: a randomized, controlled study. Anesthesiol Res Pract. (2018) 2018:9683780. 10.1155/2018/9683780
    1. Yamashita K, Kibe T, Ohno S, Kohjitani A, Sugimura M. The effects of music listening during extraction of the impacted mandibular third molar on the autonomic nervous system and psychological state. J Oral Maxillofac Surg. (2019) 77:1153e1–8. 10.1016/j.joms.2019.02.028
    1. Garcia RL, Hand CJ. Analgesic effects of self-chosen music type on cold pressor-induced pain: motivating vs. relaxing music. Psychol Music. (2016) 44:967–83. 10.1177/0305735615602144
    1. Hsu C-C, Chen S-R, Lee P-H, Lin P-C. The effect of music listening on pain, heart rate variability, and range of motion in older adults after total knee replacement. Clin Nurs Res. (2019) 28:529–47. 10.1177/1054773817749108
    1. Linnemann A, Ditzen B, Strahler J, Doerr JM, Nater UM. Music listening as a means of stress reduction in daily life. Psychoneuroendocrinology. (2015) 60:82–90. 10.1016/j.psyneuen.2015.06.008
    1. Ebner-Priemer UW, Trull TJ. Ambulatory assessment. Eur Psychol. (2009) 14:109–19. 10.1027/1016-9040.14.2.109
    1. Basiński K, Zdun-Ryzewska A, Majkowicz M. The role of musical attributes in music-induced analgesia: a preliminary brief report. Front Psychol. (2018) 9:1761. 10.31234/
    1. Martin-Saavedra JS, Vergara-Mendez LD, Pradilla I, Vélez-van-Meerbeke A, Talero-Gutiérrez C. Standardizing music characteristics for the management of pain: a systematic review and meta-analysis of clinical trials. Complement Ther Med. (2018) 41:81–9. 10.1016/j.ctim.2018.07.008
    1. Knox D, Beveridge S, Mitchell LA, MacDonald RAR. Acoustic analysis and mood classification of pain-relieving music. J Acoust Soc Am. (2011) 130:1673–82. 10.1121/1.3621029
    1. Bretherton B, Deuchars J, Windsor WL. The effects of controlled tempo manipulations on cardiovascular autonomic function. Music Sci. (2019) 2:2059204319858281. 10.1177/2059204319858281
    1. Egermann H, Fernando N, Chuen L, McAdams S. Music induces universal emotion-related psychophysiological responses: comparing Canadian listeners to Congolese Pygmies. Front Psychol. (2014) 5:1341. 10.3389/fpsyg.2014.01341
    1. Dousty M, Daneshvar S, Haghjoo M. The effects of sedative music, arousal music, and silence on electrocardiography signals. J Electrocardiol. (2011) 44:396e1–6. 10.1016/j.jelectrocard.2011.01.005
    1. Gomez P, Danuser B. Relationships between musical structure and psychophysiological measures of emotion. Emotion. (2007) 7:377–87. 10.1037/1528-3542.7.2.377
    1. Khalfa S, Roy M, Rainville P, Dalla Bella S, Peretz I. Role of tempo entrainment in psychophysiological differentiation of happy and sad music? Int J Psychophysiol. (2008) 68:17–26. 10.1016/j.ijpsycho.2007.12.001
    1. Krabs RU, Enk R, Teich N, Koelsch S. Autonomic effects of music in health and Crohn's disease: the impact of isochronicity, emotional valence, and tempo. PLoS ONE. (2015) 10:e0126224. 10.1371/journal.pone.0126224
    1. do Amaral JAT, Guida HL, Abreu LC, de, Barnabé V, Vanderlei FM, Valenti VE. Effects of auditory stimulation with music of different intensities on heart period. J Tradit Complement Med. (2016) 6:23–8. 10.1016/j.jtcme.2014.11.032
    1. Akimoto K, Hu A, Yamaguchi T, Kobayashi H. Effect of 528 Hz music on the endocrine system and autonomic nervous system. Health. (2018) 10:1159–70. 10.4236/health.2018.109088
    1. Akiyama K, Sutoo D'e. Effect of different frequencies of music on blood pressure regulation in spontaneously hypertensive rats. Neurosci Lett. (2011) 487:58–60. 10.1016/j.neulet.2010.09.073
    1. Nakajima Y, Tanaka N, Mima T, Izumi S-I. Stress recovery effects of high- and low-frequency amplified music on heart rate variability. Behav Neurol. (2016) 2016:5965894. 10.1155/2016/5965894
    1. Roden I, Früchtenicht K, Kreutz G, Linderkamp F, Grube D. Auditory stimulation training with technically manipulated musical material in preschool children with specific language impairments: an explorative study. Front. Psychol. (2019) 10:2026. 10.3389/fpsyg.2019.02026
    1. Mühlhans JH. Low frequency and infrasound: a critical review of the myths, misbeliefs and their relevance to music perception research. Musicae Scientiae. (2017) 21:267–86. 10.1177/1029864917690931
    1. Olbrich D, Conrady U, Olbrich D-I. Einsatz von AVWF® (Audio-visuelle-Wahrnehmungsförderung) in der Stressmedizin – Erfahrungen und erste Ergebnisse aus einer psychosomatischen Rehabilitationsklinik. [AVWF® in stress medicine - experiences and preliminary results from a psychosomatic rehabilitation clinic]. Ärztliche Psychotherapie. (2015) 10:39–45. Available online at:
    1. Olbrich D, Näher K. Veränderungen der Cortisol-Aufwachreaktion (CAR) nach Stimulation mit frequenzmodulierter Musik (AVWF®) – Ergebnisse aus der psychosomatischen Rehabilitation. [Changes to the cortisol awakening response (CAR) after stimulation with frequency-modulated music (AVWF® - results from psychosomatic rehabilitation]. Ärztliche Psychotherapie. (2017) 1:43–9. Available online at:
    1. Lynar E, Cvejic E, Schubert E, Vollmer-Conna U. The joy of heartfelt music: an examination of emotional and physiological responses. Int J Psychophysiol. (2017) 120:118–25. 10.1016/j.ijpsycho.2017.07.012
    1. Garza-Villarreal EA, Wilson AD, Vase L, Brattico E, Barrios FA, Jensen TS, et al. . Music reduces pain and increases functional mobility in fibromyalgia. Front Psychol. (2014) 5:90. 10.3389/fpsyg.2014.00090
    1. McCaffrey R, Freeman E. Effect of music on chronic osteoarthritis pain in older people. J Adv Nurs. (2003) 44:517–24. 10.1046/j.0309-2402.2003.02835.x
    1. Guétin S, Diego Ed, Mohy F, Adolphe C, Hoareau G, Touchon J, et al. . A patient-controlled, smartphone-based music intervention to reduce pain—a multi-center observational study of patients with chronic pain. Eur J Integr Med. (2016) 8:182–7. 10.1016/j.eujim.2016.01.002
    1. Siedliecki SL, Good M. Effect of music on power, pain, depression and disability. J Adv Nurs. (2006) 54:553–62. 10.1111/j.1365-2648.2006.03860.x
    1. Vetter D, Barth J, Uyulmaz S, Uyulmaz S, Vonlanthen R, Belli G, et al. . Effects of art on surgical patients: a systematic review and meta-analysis. Ann Surg. (2015) 262:704–13. 10.1097/SLA.0000000000001480
    1. Garza Villarreal EA, Brattico E, Vase L, Østergaard L, Vuust P. Superior analgesic effect of an active distraction versus pleasant unfamiliar sounds and music: the influence of emotion and cognitive style. PLoS ONE. (2012) 7:e0029397. 10.1371/journal.pone.0029397
    1. Finlay KA. Music-induced analgesia in chronic pain: efficacy and assessment through a primary-task paradigm. Psychol Music. (2014) 42:325–46. 10.1177/0305735612471236
    1. Onieva-Zafra MD, Castro-Sánchez AM, Matarán-Peñarrocha GA, Moreno-Lorenzo C. Effect of music as nursing intervention for people diagnosed with fibromyalgia. Pain Manag Nurs. (2013) 14:39–46. 10.1016/j.pmn.2010.09.004
    1. Feng F, Zhang Y, Hou J, Cai J, Jiang Q, Li X, et al. . Can music improve sleep quality in adults with primary insomnia? A systematic review and network meta-analysis. Int J Nurs Stud. (2018) 77:189–96. 10.1016/j.ijnurstu.2017.10.011
    1. Strahler J, Nater UM, Skoluda N. Associations between health behaviors and factors on markers of healthy psychological and physiological functioning: a daily diary study. Ann Behav Med. (2019) 54:22–35. 10.1093/abm/kaz018
    1. Tsai HF, Chen YR, Chung MH, Liao YM, Chi MJ, Chang CC, et al. . Effectiveness of music intervention in ameliorating cancer patients' anxiety, depression, pain, and fatigue: a meta-analysis. Cancer Nurs. (2014) 37:35–50. 10.1097/NCC.0000000000000116
    1. Schäfer T, Sedlmeier P, Städtler C, Huron D. The psychological functions of music listening. Front Psychol. (2013) 4:511. 10.3389/fpsyg.2013.00511
    1. Vuoskoski JK, Eerola T. Can sad music really make you sad? Indirect measures of affective states induced by music and autobiographical memories. Psychol Aesthet Creat Arts. (2012) 6:204–13. 10.1037/a0026937
    1. Mitchell LA, MacDonald RAR, Knussen C. An investigation of the effects of music and art on pain perception. Psychol Aesthet Creat Arts. (2008) 2:162–70. 10.1037/1931-3896.2.3.162
    1. Finlay KA, Rogers J. Maximizing self-care through familiarity: the role of practice effects in enhancing music listening and progressive muscle relaxation for pain management. Psychol Music. (2015) 43:511–29. 10.1177/0305735613513311
    1. Linnemann A, Kreutz G, Gollwitzer M, Nater UM. Validation of the German version of the music-empathizing-music-systemizing (MEMS) inventory (short version). Front Behav Neurosci. (2018) 12:153. 10.3389/fnbeh.2018.00153
    1. Kreutz G, Schubert E, Mitchell LA. Cognitive styles of music listening. Music Percept. (2008) 26:57–73. 10.1525/mp.2008.26.1.57
    1. Saarikallio SH. Music in mood regulation: initial scale development. Musicae Scientiae. (2008) 12:291–309. 10.1177/102986490801200206
    1. Thomson CJ, Reece JE, Di Benedetto M. The relationship between music-related mood regulation and psychopathology in young people. Musicae Scientiae. (2014) 18:150–65. 10.1177/1029864914521422
    1. Sammito S, Sammito W, Böckelmann I. The circadian rhythm of heart rate variability. Biol Rhythm Res. (2016) 47:717–30. 10.1080/09291016.2016.1183887
    1. Hagenauer MH, Crodelle JA, Piltz SH, Toporikova N, Ferguson P, Booth V. The modulation of pain by circadian and sleep-dependent processes: a review of the experimental evidence. In: Layton AT, Miller LA. editors. Women in Mathematical Biology, Research Collaboration Workshop. Knoxville, TE: NIMBioS; (2017). p. 1–21. 10.1101/098269
    1. Barutcu I, Esen AM, Kaya D, Turkmen M, Karakaya O, Melek M, et al. . Cigarette smoking and heart rate variability: dynamic influence of parasympathetic and sympathetic maneuvers. Ann Noninvasive Electrocardiol. (2005) 10:324–9. 10.1111/j.1542-474X.2005.00636.x
    1. Zale EL, Maisto SA, Ditre JW. Interrelations between pain and alcohol: an integrative review. Clin Psychol Rev. (2015) 37:57–71. 10.1016/j.cpr.2015.02.005
    1. Löwe B, Spitzer RL, Zipfel S, Herzog W. Gesundheitsfragebogen für Patienten (PHQ D). Komplettversion und Kurzform Testmappe mit Manual, Fragebögen, Schablonen. Karlsruhe: Pfizer; (2002).
    1. Hautzinger M, Keller F, Kühner C. Beck Depressions-Inventar Revision (BDI-II) Revision. 2nd ed. Frankfurt: Pearson Assessment; (2009).
    1. Ditzen B, Nussbeck F, Drobnjak S, Spörri C, Wüest D, Ehlert U. Validierung eines deutschsprachigen DSM-IV-TR basierten Fragebogens zum prämenstruellen Syndrom. Zeitschrift für Klinische Psychologie und Psychotherapie. (2011) 40:149–59. 10.1026/1616-3443/a000095
    1. Snow G. Randomization for Block Random Clinical Trials. (2015). Available online at: (accessed November 1, 2019).
    1. R Core Team . R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing (2017). Available online at: (accessed December 06, 2019).
    1. Gold C, Solli HP, Krüger V, Lie SA. Dose-response relationship in music therapy for people with serious mental disorders: systematic review and meta-analysis. Clin Psychol Rev. (2009) 29:193–207. 10.1016/j.cpr.2009.01.001
    1. Borg E, Counter SA. The middle-ear muscles. Sci Am. (1989) 261:74–80. 10.1038/scientificamerican0889-74
    1. Lovallo W. The cold pressor test and autonomic function: a review and integration. Psychophysiology. (1975) 12:268–82. 10.1111/j.1469-8986.1975.tb01289.x
    1. Ruscheweyh R, Stumpenhorst F, Knecht S, Marziniak M. Comparison of the cold pressor test and contact thermode-delivered cold stimuli for the assessment of cold pain sensitivity. J Pain. (2010) 11:728–36. 10.1016/j.jpain.2009.10.016
    1. Nater UM. The multidimensionality of stress and its assessment. Brain Behav Immun. (2018) 73:159–60. 10.1016/j.bbi.2018.07.018
    1. Electrophysiology TFotES. Heart rate variability. Circulation. (1996) 93:1043–65. 10.1161/01.CIR.93.5.1043
    1. Kitchovitch M. Canadian Rockies: Amazing Places on Our Planet. (2015). Available online at: (accessed November 1, 2019).
    1. Stalder T, Kirschbaum C. Analysis of cortisol in hair—state of the art and future directions. Brain Behav Immun. (2012) 26:1019–29. 10.1016/j.bbi.2012.02.002
    1. Schulz P, Schlotz W, Becker P. Trierer Inventar zum chronischen Stress (TICS). Göttingen: Hogrefe; (2004).
    1. Schlotz W, Yim IS, Zoccola PM, Jansen L, Schulz P. The perceived stress reactivity scale: measurement invariance, stability, and validity in three countries. Psychol Assess. (2011) 23:80–94. 10.1037/a0021148
    1. Wilhelm P, Schoebi D. Assessing mood in daily life. Eur J Psychol Assess. (2007) 23:258–67. 10.1027/1015-5759.23.4.258
    1. Abler B, Kessler H. Emotion regulation questionnaire – Eine deutschsprachige Fassung des ERQ von Gross und John. Diagnostica. (2009) 55:144–52. 10.1026/0012-1924.55.3.144
    1. Smets EM, Garssen B, Bonke B, Haes JC, de. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J Psychosom Res. (1995) 39:315–25. 10.1016/0022-3999(94)00125-O
    1. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. (1989) 28:193–213. 10.1016/0165-1781(89)90047-4
    1. Nater UM, Krebs M, Ehlert U. Sensation seeking, music preference, and psychophysiological reactivity to music. Musicae Scientiae. (2005) 9:239–54. 10.1177/102986490500900205
    1. Rammstedt B, John OP. Measuring personality in one minute or less: a 10-item short version of the Big Five Inventory in English and German. J Res Pers. (2007) 41:203–12. 10.1016/j.jrp.2006.02.001
    1. Schulz U, Schwarzer R. Soziale Unterstützung bei der Krankheitsbewältigung: Die Berliner Social Support Skalen (BSSS). Diagnostica. (2003) 49:73–82. 10.1026//0012-1924.49.2.73
    1. Bell ML, Whitehead AL, Julious SA. Guidance for using pilot studies to inform the design of intervention trials with continuous outcomes. Clin Epidemiol. (2018) 10:153–7. 10.2147/CLEP.S146397
    1. Lancaster GA, Dodd S, Williamson PR. Design and analysis of pilot studies: recommendations for good practice. J Eval Clin Pract. (2004) 10:307–12. 10.1111/j.2002.384.doc.x
    1. Moore CG, Carter RE, Nietert PJ, Stewart PW. Recommendations for planning pilot studies in clinical and translational research. Clin Transl Sci. (2011) 4:332–7. 10.1111/j.1752-8062.2011.00347.x
    1. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. (2007) 39:175–91. 10.3758/BF03193146
    1. Molenberghs G, Kenward M. Missing Data in Clinical Studies. Hoboken, NJ: John Wiley & Sons Ltd; (2007). 10.1002/9780470510445
    1. Schönbrodt F, Gollwitzer M, Abele-Brehm A. Data Management in Psychological Science: Specification of the DFG Guidelines. (2016). Available online at: (accessed November 1, 2019).
    1. Blacker KJ, Herbert JD, Forman EM, Kounios J. Acceptance-versus change-based pain management: the role of psychological acceptance. Behav Modif. (2012) 36:37–48. 10.1177/0145445511420281
    1. Minkley N, Schröder TP, Wolf OT, Kirchner WH. The socially evaluated cold-pressor test (SECPT) for groups: effects of repeated administration of a combined physiological and psychological stressor. Psychoneuroendocrinology. (2014) 45:119–27. 10.1016/j.psyneuen.2014.03.022
    1. Windesheim JH, Roth GM, Hines EA. Direct arterial study of the blood pressure response to cold of normotensive subjects and patients with essential hypertension before and during treatment with various antihypertensive drugs. Circulation. (1955) 11:878–88. 10.1161/01.CIR.11.6.878

Source: PubMed

3
Iratkozz fel