Home-based transcranial direct current stimulation plus tracking training therapy in people with stroke: an open-label feasibility study

Ann Van de Winckel, James R Carey, Teresa A Bisson, Elsa C Hauschildt, Christopher D Streib, William K Durfee, Ann Van de Winckel, James R Carey, Teresa A Bisson, Elsa C Hauschildt, Christopher D Streib, William K Durfee

Abstract

Background: Transcranial direct current stimulation (tDCS) is an effective neuromodulation adjunct to repetitive motor training in promoting motor recovery post-stroke. Finger tracking training is motor training whereby people with stroke use the impaired index finger to trace waveform-shaped lines on a monitor. Our aims were to assess the feasibility and safety of a telerehabilitation program consisting of tDCS and finger tracking training through questionnaires on ease of use, adverse symptoms, and quantitative assessments of motor function and cognition. We believe this telerehabilitation program will be safe and feasible, and may reduce patient and clinic costs.

Methods: Six participants with hemiplegia post-stroke [mean (SD) age was 61 (10) years; 3 women; mean (SD) time post-stroke was 5.5 (6.5) years] received five 20-min tDCS sessions and finger tracking training provided through telecommunication. Safety measurements included the Digit Span Forward Test for memory, a survey of symptoms, and the Box and Block test for motor function. We assessed feasibility by adherence to treatment and by a questionnaire on ease of equipment use. We reported descriptive statistics on all outcome measures.

Results: Participants completed all treatment sessions with no adverse events. Also, 83.33% of participants found the set-up easy, and all were comfortable with the devices. There was 100% adherence to the sessions and all recommended telerehabilitation.

Conclusions: tDCS with finger tracking training delivered through telerehabilitation was safe, feasible, and has the potential to be a cost-effective home-based therapy for post-stroke motor rehabilitation.

Trial registration: NCT02460809 (ClinicalTrials.gov).

Keywords: Neurological rehabilitation; Physical therapy; Stroke; Telerehabilitation; Transcranial direct current stimulation.

Conflict of interest statement

Ethics approval and consent to participate

The internal review board (IRB) of the University of Minnesota approved the study (IRB number 1503 M65941). All participants signed a consent form.

Consent for publication

The participant has signed consent for publication of the picture.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Participant with right hemiparesis receiving transcranial direct current magnetic stimulation (tDCS) in their home simultaneous while performing the finger movement tracking task on the tracking computer (left). The tDCS computer (right) shows the supervising investigator, located off-site, who communicated with the participant through the video conferencing application, controlled the tDCS stimulator through web-based software, and controlled the tracking protocols. (Permission was obtained from the participant for the publication of this picture)
Fig. 2
Fig. 2
Research design and participants’ study timeline

References

    1. Khedr EM, Abdel-Fadeil MR, Farghali A, Qaid M. Role of 1 and 3 Hz repetitive transcranial magnetic stimulation on motor function recovery after acute ischaemic stroke. Eur J Neurol. 2009;16:1323–1330. doi: 10.1111/j.1468-1331.2009.02746.x.
    1. Classen J, Schnitzler A, Binkofski F, Werhahn KJ, Kim YS, Kessler KR, et al. The motor syndrome associated with exaggerated inhibition within the primary motor cortex of patients with hemiparetic. Brain. 1997;120:605–619. doi: 10.1093/brain/120.4.605.
    1. Murase N, Duque J, Mazzocchio R, Cohen LG. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol. 2004;55:400–409. doi: 10.1002/ana.10848.
    1. Taub E, Crago J, Burgio L, Groomes T, Cook EI, DeLuca S. An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping. J Exp Anal Behav. 1994;61:281–293. doi: 10.1901/jeab.1994.61-281.
    1. Hömberg V. Neurorehabilitation approaches to facilitate motor recovery. Handb Clin Neurol. 2013;110:161–173. doi: 10.1016/B978-0-444-52901-5.00014-9.
    1. Bolognini Nadia, Pascual-Leone Alvaro, Fregni Felipe. Using non-invasive brain stimulation to augment motor training-induced plasticity. Journal of NeuroEngineering and Rehabilitation. 2009;6(1):8. doi: 10.1186/1743-0003-6-8.
    1. Carey JR, Durfee WK, Bhatt E, Nagpal A, Weinstein SA, Anderson KM, et al. Comparison of finger tracking versus simple movement training via telerehabilitation to alter hand function and cortical reorganization after stroke. Neurorehabil Neural Repair. 2007;21:216–232. doi: 10.1177/1545968306292381.
    1. Deng H, Durfee WK, Nuckley DJ, Rheude BS, Severson AE, Skluzacek KM, et al. Complex versus simple ankle movement training in stroke using telerehabilitation: a randomized controlled trial. Phys Ther. 2012;92:197–209. doi: 10.2522/ptj.20110018.
    1. Carey JR, Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey L, Rundquist P, et al. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain. 2002;125:773–788. doi: 10.1093/brain/awf091.
    1. Chen HM, Chen CC, Hsueh IP, Huang SL, Hsieh CL. Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke. Neurorehabil Neural Repair. 2009;23(5):435–440. doi: 10.1177/1545968308331146.
    1. Rehabilitation Measures Database, . Accessed 12 Dec 2017.
    1. Allman C, Amadi U, Winkler AM, Wilkins L, Filippini N, Kischka U, et al. Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci Transl Med. 2016;8:330re1. doi: 10.1126/scitranslmed.aad5651.
    1. Lindenberg R, Renga V, Zhu LL, Nair D, Schlaug G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 2010;75:2176–2184. doi: 10.1212/WNL.0b013e318202013a.
    1. Elsner B, Kwakkel G, Kugler J, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials. J Neuroeng Rehabil. 2017;14(1):95. doi: 10.1186/s12984-017-0301-7.
    1. Kubis N. Non-invasive brain stimulation to enhance post-stroke recovery. Front Neural Circuits. 2016;10:56. doi: 10.3389/fncir.2016.00056.
    1. Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, Mourdoukoutas AP, Kronberg G, Truong D, Boggio P, Brunoni AR. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016;9(5):641–661. doi: 10.1016/j.brs.2016.06.004.
    1. An TG, Kim SH, Kim KU. Effect of transcranial direct current stimulation of stroke patients on depression and quality of life. J Phys Ther Sci. 2017;29:505–507. doi: 10.1589/jpts.29.505.
    1. Valiengo LC, Goulart AC, de Oliveira JF, Benseñor IM, Lotufo PA, Brunoni AR. Transcranial direct current stimulation for the treatment of post-stroke depression: results from a randomised, sham-controlled, double-blinded trial. J Neurol Neurosurg Psychiatry. 2017;88:170–175. doi: 10.1136/jnnp-2016-314075.
    1. Fujimoto S, Kon N, Otaka Y, Yamaguchi T, Nakayama T, Kondo K, et al. Transcranial direct current stimulation over the primary and secondary somatosensory cortices transiently improves tactile spatial discrimination in stroke patients. Front Neurosci. 2016;10:128. doi: 10.3389/fnins.2016.00128.
    1. Lee DJ, Lee YS, Kim HJ, Seo TH. The effects of exercise training using transcranial direct current stimulation (tDCS) on breathing in patients with chronic stroke patients. J Phys Ther Sci. 2017;29:527–530. doi: 10.1589/jpts.29.527.
    1. Morishita T, Inoue T. Brain stimulation therapy for central post-stroke pain from a perspective of interhemispheric neural network remodeling. Front Hum Neurosci. 2016;10:166.
    1. Lefebvre S, Dricot L, Laloux P, Desfontaines P, Evrard F, Peeters A, et al. Increased functional connectivity one week after motor learning and tDCS in stroke patients. Neuroscience. 2017;340:424–435. doi: 10.1016/j.neuroscience.2016.10.066.
    1. O'Brien S. Trends in inpatient rehabilitation stroke outcomes before and after advent of the prospective payment system: a systematic review. JNPT. 2010;34:17–23.
    1. O'Brien SR, Xue Y, Ingersoll G, Kelly A. Shorter length of stay is associated with worse functional outcomes for medicare beneficiaries with stroke. Phys Ther. 2013;93:1592–1602. doi: 10.2522/ptj.20120484.
    1. Dobrez D, Heinemann AW, Deutsch A, Manheim L, Mallinson T. Impact of Medicare's prospective payment system for inpatient rehabilitation facilities on stroke patient outcomes. Am J Phys Med Rehabil. 2010;89:198–204. doi: 10.1097/PHM.0b013e3181c9fb40.
    1. Granger CV, Markello SJ, Graham JE, Deutsch A, Ottenbacher KJ. The uniform data system for medical rehabilitation: report of patients with stroke discharged from comprehensive medical programs in 2000-2007. Am J Phys Med Rehabil. 2009;88:961–972. doi: 10.1097/PHM.0b013e3181c1ec38.
    1. Charvet Leigh, Shaw Michael, Dobbs Bryan, Frontario Ariana, Sherman Kathleen, Bikson Marom, Datta Abhishek, Krupp Lauren, Zeinapour Esmail, Kasschau Margaret. Remotely Supervised Transcranial Direct Current Stimulation Increases the Benefit of At-Home Cognitive Training in Multiple Sclerosis. Neuromodulation: Technology at the Neural Interface. 2017;21(4):383–389. doi: 10.1111/ner.12583.
    1. Kasschau M, Reisner J, Sherman K, Bikson M, Datta A, Charvet LE. Transcranial direct current stimulation is feasible for remotely supervised home delivery in multiple sclerosis. Neuromodulation. 2016;19:824–831. doi: 10.1111/ner.12430.
    1. Laver KE, Schoene D, Crotty M, George S, Lannin NA, Sherrington C. Telerehabilitation services for stroke. Cochrane Database Syst Rev. 2013;12:CD010255.
    1. Chen J, Jin W, Zhang XX, Xu W, Liu XN, Ren CC. Telerehabilitation approaches for stroke patients: systematic review and meta-analysis of randomized controlled trials. J Stroke Cerebrovasc Dis. 2015;24(12):2660–2668. doi: 10.1016/j.jstrokecerebrovasdis.2015.09.014.
    1. Nelson RE, Okon N, Lesko AC, Majersik JJ, Bhatt A, Baraban E. The cost-effectiveness of telestroke in the Pacific northwest region of the USA. J Telemed Telecare. 2016;22(7):413–421. doi: 10.1177/1357633X15613920.
    1. Dumitrascu OM, Demaerschalk BM. Telestroke. Curr Cardiol Rep. 2017;19(9):85. doi: 10.1007/s11886-017-0895-1.
    1. Linder SM, Rosenfeldt AB, Bay RC, Sahu K, Wolf SL, Alberts JL. Improving quality of life and depression after stroke through Telerehabilitation. Am J Occup Ther. 2015;69(2):6902290020p1–690229002010. doi: 10.5014/ajot.2015.014498.
    1. Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci. 2007;25:123–129.
    1. Zimerman M, Heise KF, Hoppe J, Cohen LG, Gerloff C, Hummel FC. Modulation of training by single-session transcranial direct current stimulation to the intact motor cortex enhances motor skill acquisition of the paretic hand. Stroke. 2012;43:2185–2191. doi: 10.1161/STROKEAHA.111.645382.
    1. Stagg CJ, Bachtiar V, O'Shea J, Allman C, Bosnell RA, Kischka U, et al. Cortical activation changes underlying stimulation-induced behavioural gains in chronic stroke. Brain. 2012;135:276–284. doi: 10.1093/brain/awr313.
    1. Bradnam LV, Stinear CM, Barber PA, Byblow WD. Contralesional hemisphere control of the proximal paretic upper limb following stroke. Cereb Cortex. 2012;22:2662–2671. doi: 10.1093/cercor/bhr344.
    1. Van de Winckel A, Feys H, van der Knaap S, Messerli R, Baronti F, Lehmann R, et al. Can quality of movement be measured? Rasch analysis and inter-rater reliability of the motor evaluation scale for upper extremity in stroke patients (MESUPES) Clin Rehabil. 2006;20:871–884. doi: 10.1177/0269215506072181.
    1. Folstein M, Folstein S, McHugh P. "Mini-mental state:" A practical method for grading the cognitive state of patients for the clinician. J Psychiat Res. 1975;12:189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Bohannon R, Smith M. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67:206. doi: 10.1093/ptj/67.2.206.
    1. Fugl-Meyer A, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient: a method for evalulation of physical performance. Scand J Rehab Med. 1975;7:13–31.
    1. Oldfield R. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113. doi: 10.1016/0028-3932(71)90067-4.
    1. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the box and block test of manual dexterity. Am J Occup Ther. 1985;39:386–391. doi: 10.5014/ajot.39.6.386.
    1. Wechsler D. Wechsler adult intelligence scale - third edition, Wechsler memory scale - third edition: technical manual. New York: Psychological Corporation; 2002.
    1. Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011;14:1133–1145. doi: 10.1017/S1461145710001690.
    1. Charvet LE, Kasschau M, Datta A, Knotkova H, Stevens MC, Alonzo A, Loo C, Krull KR, Bikson M. Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: guidelines for technology and protocols. Front Syst Neurosci. 2015;9:26. doi: 10.3389/fnsys.2015.00026.
    1. Carey JR. Manual stretch: effect on finger movement control and force control in stroke subjects with spastic extrinsic finger flexor muscles. Arch Phys Med Rehabil. 1990;71:888–894.
    1. Sehm B. tDCS for motor stroke: the relevance of systematic comparisons. Clin Neurophysiol. 2017;128:1367–1368. doi: 10.1016/j.clinph.2017.04.008.
    1. Chhatbar PY, Chen R, Deardorff R, Dellenbach B, Kautz SA, George MS, et al. Safety and tolerability of transcranial direct current stimulation to stroke patients - a phase I current escalation study. Brain Stimul. 2017;10:553–559. doi: 10.1016/j.brs.2017.02.007.
    1. Buch ER, Santarnecchi E, Antal A, Born J, Celnik PA, Classen J, et al. Effects of tDCS on motor learning and memory formation: a consensus and critical position paper. Clin Neurophysiol. 2017;128:589–603. doi: 10.1016/j.clinph.2017.01.004.
    1. Lindenberg R, Sieg MM, Meinzer M, Nachtigall L, Flöel A. Neural correlates of unihemispheric and bihemispheric motor cortex stimulation in healthy young adults. NeuroImage. 2016;140:141–149. doi: 10.1016/j.neuroimage.2016.01.057.
    1. Lefebvre S, Liew SL. Anatomical parameters of tDCS to modulate the motor system after stroke: a review. Front Neurol. 2017;8:29. doi: 10.3389/fneur.2017.00029.
    1. Rabadi MH, Aston CE. Effect of transcranial direct current stimulation on severely affected arm-hand motor function in patients after an acute ischemic stroke: a pilot randomized control trial. Am J Phys Med Rehabil. 2017;96:S178–S184. doi: 10.1097/PHM.0000000000000823.
    1. Goodwill AM, Teo WP, Morgan P, Daly RM, Kidgell DJ. Bihemispheric-tDCS and upper limb rehabilitation improves retention of motor function in chronic stroke: a pilot study. Front Hum Neurosci. 2016;10:258. doi: 10.3389/fnhum.2016.00258.
    1. Mortensen J, Figlewski K, Andersen H. Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage: a double-blind randomized controlled trial. Disabil Rehabil. 2016;38:637–643. doi: 10.3109/09638288.2015.1055379.
    1. Gropen T, Magdon-Ismail Z, Day D, Melluzzo S, Schwamm LH, Group NA Regional implementation of the stroke systems of care model: recommendations of the northeast cerebrovascular consortium. Stroke. 2009;40:1793–1802. doi: 10.1161/STROKEAHA.108.531053.
    1. Adamovich S, Fluet GG, Merians AS, Mathai A, Qiu Q. Recovery of hand function in virtual reality: training hemiparetic hand and arm together or separately. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:3475–3478.
    1. Yeh SC, Lee SH, Chan RC, Wu Y, Zheng LR, Flynn S. The efficacy of a haptic-enhanced virtual reality system for precision grasp Acquisition in Stroke Rehabilitation. J Healthc Eng. 2017;2017:9840273. doi: 10.1155/2017/9840273.
    1. Plow E. B., Sankarasubramanian V., Cunningham D. A., Potter-Baker K., Varnerin N., Cohen L. G., Sterr A., Conforto A. B., Machado A. G. Models to Tailor Brain Stimulation Therapies in Stroke. Neural Plasticity. 2016;2016:1–17. doi: 10.1155/2016/4071620.
    1. Woytowicz EJ, Rietschel JC, Goodman RN, Conroy SS, Sorkin JD, Whitall J, McCombe WS. Determining levels of upper extremity movement impairment by applying cluster analysis to upper extremity Fugl-Meyer assessment in chronic stroke. Arch Phys Med Rehabil. 2017;98(3):456–462. doi: 10.1016/j.apmr.2016.06.023.
    1. Hall MJ, Levant S, DeFrances CJ. Hospitalization for stroke in U.S. hospitals, 1989–2009. NCHS data brief, No. 95. Hyattsville, MD: National Center for Health Statistics; 2012. [Online: ].

Source: PubMed

3
Iratkozz fel