RORC2 Genetic Variants and Serum Levels in Patients with Rheumatoid Arthritis

Agnieszka Paradowska-Gorycka, Barbara Stypinska, Andrzej Pawlik, Katarzyna Romanowska-Prochnicka, Ewa Haladyj, Malgorzata Manczak, Marzena Olesinska, Agnieszka Paradowska-Gorycka, Barbara Stypinska, Andrzej Pawlik, Katarzyna Romanowska-Prochnicka, Ewa Haladyj, Malgorzata Manczak, Marzena Olesinska

Abstract

Background: In the present study, we aimed to evaluate whether polymorphisms within the RORc2 gene are involved in the risk and severity of rheumatoid arthritis (RA).

Methods: 591 RA patients and 341 healthy individuals were examined for RORc2 gene polymorphisms. Serum retinoic acid receptor-related orphan receptor C (RORc) levels were measured by enzyme-linked immunosorbent assay (ELISA).

Results: The rs9826 A/G, rs12045886 T/C and rs9017 G/A RORc2 gene SNPs show no significant differences in the proportion of cases and control. Overall, rs9826 and rs9017 were in high linkage disequilibrium (LD) with D' = 0.952 and r² = 0.874, except rs9826 and rs12045886; and rs12045886 and rs9017 in weak LD. The genotype-phenotype analysis showed a significant association between RORc2 rs9826 A/G and rs9017 G/A single nucleotide polymorphisms (SNPs) and median of C-reactive protein (CRP). Serum RORc levels was higher in RA patients with rs9826AA, rs12045886TT and -TC, and rs9017AA genotypes compared to healthy subjects with the same genotypes (p = 0.02, p = 0.04 and p = 0.01, respectively). Moreover, the median of RORc protein level was higher in RA patients with number of swollen joints bigger then 3 (p = 0.04) and with Health Assessment Questionnaires (HAQ) score bigger then 1.5 (0.049).

Conclusions: Current findings indicated that the RORc2 genetic polymorphism and the RORc2 protein level may be associated with severity of RA in the Polish population.

Keywords: RORc; Th17 cells; pathogenesis; polymorphisms; rheumatoid arthritis.

Figures

Figure 1
Figure 1
Sequencing map of genotype for RORc2 gene. (A) rs9826 A/G, the arrow of 1–3 showed AA, AG and GG genotypes, respectively.; (B) rs12045886 T/C, the arrow of 1–3 showed TT, TC and TT genotypes, respectively; (C) rs9017 G/A, the arrow of 1–3 showed GG, GA and AA genotypes, respectively.
Figure 2
Figure 2
Linkage disequilibrium (LD) plots of three SNPs in the RORc2 gene. The plot illustrates pairwise LD between all polymorphisms based on D′ values. Values approaching zero indicate absence of LD, and those approaching 100 indicate complete LD. The square colored red represent varying degrees of LD < 1 and LOD (logarithm of odds) > 2 scores (strong LD) and white blocks represent varying degrees of LD < 1 and LOD < 2 scores (weak LD).
Figure 3
Figure 3
RORc2 protein level in RA patients and healthy subjects.
Figure 4
Figure 4
Variation in RORc expression levels in (A) RA patients and (B) control group in relation to RORc2 genotypes: (A) rs9826 A/G, p = 0.589; rs12045886 T/C, p = 0.207; and rs9017 G/A, p = 0.776; and (B) rs9826 A/G, p = 0.106; rs12045886 T/C, p = 0.483; and rs9017 G/A, p = 0.073. p, Kruskal–Wallis test; p < 0.05 was considered significant.
Figure 4
Figure 4
Variation in RORc expression levels in (A) RA patients and (B) control group in relation to RORc2 genotypes: (A) rs9826 A/G, p = 0.589; rs12045886 T/C, p = 0.207; and rs9017 G/A, p = 0.776; and (B) rs9826 A/G, p = 0.106; rs12045886 T/C, p = 0.483; and rs9017 G/A, p = 0.073. p, Kruskal–Wallis test; p < 0.05 was considered significant.

References

    1. Dardalhon V., Korn T., Kuchroo V.K., Anderson A.C. Role of Th1 and Th17 cells in organ-specyfic autoimmunity. J. Autoimmun. 2008;3:252–256. doi: 10.1016/j.jaut.2008.04.017.
    1. Pernis A.B. Th17 cells in rheumatoid arthritis and systemic lupus erythematosus. J. Intern. Med. 2009;265:644–652. doi: 10.1111/j.1365-2796.2009.02099.x.
    1. Annunziato F., Cosmi L., Liotta F., Maggi E., Romagnani S. Type 17 T helper cells-origins, features and possible roles in rheumatic disease. Nat. Rev. Rheumatol. 2009;5:325–331. doi: 10.1038/nrrheum.2009.80.
    1. Cheung P.F.Y., Wong C.K., Lam C.W.K. Molecular mechanisms of cytokine and chemokine release from eosinophils activated by IL-17A, IL-17F and IL-23: Implication for Th17 lymphocytes-mediated allergic inflammation. J. Immunol. 2008;180:5625–5635. doi: 10.4049/jimmunol.180.8.5625.
    1. Kim H.R., Cho M.L., Kim K.W., Juhn J.Y., Hwang S.Y., Yoon C.H., Park S.H., Lee S.H., Kim H.Y. Up-regulation of IL-23p19 expression in rheumatoid arthritis synovial fibroblasts by Il-17 through PI3-kinase, NF-κB and p38 MAPK-dependent signaling pathways? Rheumatology. 2007;46:57–64. doi: 10.1093/rheumatology/kel159.
    1. Lupardus P.J., Garcia C.K. The structure of interleukin-23 reveals the molecular BASIC of p40 subunit sparing with IL-12. J. Mol. Biol. 2008;382:931–941. doi: 10.1016/j.jmb.2008.07.051.
    1. Crome S.Q., Wang A.Y., Kang C.Y., Levings M.K. The role of retinoic acid-related orphan receptor variant 2 and IL-17 in the development and function CD4+ T cells. Eur. J. Immunol. 2009;39:1480–1493. doi: 10.1002/eji.200838908.
    1. Langrish C.L., Chen Y., Blumenschein W.M., Mattson J., Basham B., Sedgwick J.D., McClanahan T., Kastelein R.A., Cua D.J. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 2005;201:233–240. doi: 10.1084/jem.20041257.
    1. Harrington L.E., Mangan P.R., Weaver C.T. Expanding the effector CD4 T-cell repertoire: The Th17 lineage. Curr. Opin. Immunol. 2006;18:349–356. doi: 10.1016/j.coi.2006.03.017.
    1. Steinman L. A brief history of Th17, the first major revision in the Th1/Th2 hypothesis of T cell-mediated tissue damage. Nat. Med. 2007;13:139–145. doi: 10.1038/nm1551.
    1. Tesmer L.A., Lundy S.K., Sarkar S., Fox D.A. Th 17 cells in human disease. Immunol. Rev. 2008;223:87–113. doi: 10.1111/j.1600-065X.2008.00628.x.
    1. Ivanov I.I., McKenzie B.S., Zhou L., Tadokoro C.E., Lepelley A., Lafaille J.J., Cua D.J., Littman D.R. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17 + T helper cell. Cell. 2006;126:1121–1133. doi: 10.1016/j.cell.2006.07.035.
    1. Olivito B., Simonini G., Ciullini S., Moriondo M., Betti L., Gambineri E., Cantarini L., de Martino M., Azzari C., Cimaz R. Th17 transcription factor RORc2 is inversely correlated with Foxp3 expression in the joints of children with juvenile idiopathic arthritis. J. Rheumatol. 2009;36:2017–2024. doi: 10.3899/jrheum.090066.
    1. Takeda Y., Kang H.S., Freudenberg J., DeGraff L.M., Jothi R., Jetten A.M. Retino acid-related orphan receptor γ (RORγ): A novel participant in the diurnal regulation of hepatic gluconeogenesis and insulin sensitivity. PLoS Genet. 2014;10:488. doi: 10.1371/journal.pgen.1004331.
    1. Wang H., Chu W., Das S.K., Zheng Z., Hasstedt S.J., Elbein S.C. Molecular screening and association studies of retinoid-related orphan receptor γ (RORC): A positional and functional candidate for type 2 diabetes. Mol. Genet. Metab. 2003;79:176–182. doi: 10.1016/S1096-7192(03)00096-9.
    1. Manel N., Unutmaz D., Littman D.R. The differentiation of human Th17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγT. Nat. Immunol. 2008;9:641–649. doi: 10.1038/ni.1610.
    1. Unutmaz D. RORc2: The master of human Th17 cell programming. Eur. J. Immunol. 2009;39:1452–1455. doi: 10.1002/eji.200939540.
    1. Burgler S., Mantel P.Y., Bassin C., Ouaked N., Akdis C.A., Schmidt-Weber C.B. RORC2 is involved in T cell polarization through interaction with the FOXP3 promoter. J. Immunol. 2010;184:6161–6169. doi: 10.4049/jimmunol.0903243.
    1. Park T.Y., Park S.D., Cho J.Y., Moon J.S., Kim N.Y., Park K., Seong R.H., Lee S.W., Morio T., Bothwell A.L., et al. ROR-γt-specific transcriptional interactomic inhibition suppresses autoimmunity associated with Th17 cells. PNAS. 2014;11:18673–18678. doi: 10.1073/pnas.1413687112.
    1. Newman B., Lose F., Kedda M.A., Francois M., Ferguson K., Janda M., Yates P., Spurdle A.B., Hayes S.C. Possible genetic predisposition to lymphedema after breast cancer. Lymphat. Res. Biol. 2012;10:2–13. doi: 10.1089/lrb.2011.0024.
    1. Shen H., Goodall J.C., Gaston J.S. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum. 2009;60:1647–1656. doi: 10.1002/art.24568.
    1. Awasthi A., Kuchroo V.K. Th17 cells: From precursor to players in inflammation and infection. Int. Immunobiol. 2009;21:489–498. doi: 10.1093/intimm/dxp021.
    1. Qi Z.X., Wang L.Y., Fan Y.C., Zhang J.J., Li T., Wang K. Increased peripheral RORα and RORγt mRNA expression is associated with acute-on-chronic hepatitis B liver failure. J. Viral Hepat. 2012;19:811–822. doi: 10.1111/j.1365-2893.2012.01603.x.
    1. Saito Y. AT-rich-interactive domain-containing protein 5A functions as a negative regulator of retinoic acid receptor-related orphan nuclear receptor γt-induced Th17 cell differentiation. Arthritis Rheum. 2014;66:1185–1194. doi: 10.1002/art.38324.
    1. Sun Z., Unutmaz D., Zou Y.R., Sunshine M., Pierani A., Brenner-Morton S., Mebius R.E., Littman D.R. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science. 2000;288:2369–2373. doi: 10.1126/science.288.5475.2369.
    1. Chauvet C., Bois-Joyeux B., Danan J.L. Retinoic acid receptor-related orphan receptor (ROR) alpha4 is the predominant isoform of the nuclear receptor RORα in the liver and is up-regulated by hypoxia in HepG2 human hepatoma cells. Biochem. J. 2002;364:449–456. doi: 10.1042/bj20011558.
    1. Liao D., Hou S., Zhang J., Fang J., Liu Y., Bai L., Cao Q., Kijlstra A., Yang P. Copy number variants and genetic polymorphisms in TBX21, GATA3, RORc, Foxp3 and susceptibility to Behcet’s disease and Vogt-Koyanagi-harada syndrome. Sci. Rep. 2015;5:9511. doi: 10.1038/srep09511.
    1. Maggi L., Santarlasci V., Capone M., Peired A., Frosali F., Crome S.Q., Querci V., Fambrini M., Liotta F., Levings M.K., et al. CD161 is a marker of all human IL-17-producing T cell subsets and is induced by RORc. Eur. J. Immunol. 2010;40:2174–2181. doi: 10.1002/eji.200940257.
    1. Wang W., Shao S., Jiao Z., Guo M., Xu H., Wang S. The Th17/Treg imbalance and cytokine environment in peripheral blood of patients with rheumatoid arthritis. Rheumatol. Int. 2012;32:887–893. doi: 10.1007/s00296-010-1710-0.
    1. Yang L., Anderson D.E., Baecher-Allan C., Hastings W.D., Bettelli E., Oukka M., Kuchroo V.K., Hafler D.A. IL-21 and TGF-beta are required for differentiation of human TH17 cells. Nature. 2008;454:350–352. doi: 10.1038/nature07021.
    1. Shi Y.Y., He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15:97–98. doi: 10.1038/sj.cr.7310101.
    1. Li Z., Zhang Z., He Z., Tang W., Li T., Zeng Z., He L., Shi Y. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: Update of the SHEsis (. ) Cell Res. 2009;19:519–523. doi: 10.1038/cr.2009.33.

Source: PubMed

3
Iratkozz fel