Identification of preferential CD4+ T-cell targets for HIV infection in the cervix

V R Joag, L R McKinnon, J Liu, S T Kidane, M H Yudin, B Nyanga, S Kimwaki, K E Besel, J O Obila, S Huibner, J O Oyugi, J Arthos, O Anzala, J Kimani, M A Ostrowski, Toronto HIV Research Group, R Kaul, K Kuang, J A Schwartz, K L Clayton, V Moxley- Paquette, W Zhan, H Sivanesan, V R Joag, L R McKinnon, J Liu, S T Kidane, M H Yudin, B Nyanga, S Kimwaki, K E Besel, J O Obila, S Huibner, J O Oyugi, J Arthos, O Anzala, J Kimani, M A Ostrowski, Toronto HIV Research Group, R Kaul, K Kuang, J A Schwartz, K L Clayton, V Moxley- Paquette, W Zhan, H Sivanesan

Abstract

A better understanding of the cellular targets of HIV infection in the female genital tract may inform HIV prevention efforts. Proposed correlates of cellular susceptibility include the HIV co-receptor CCR5, peripheral homing integrins, and immune activation. We used a CCR5-tropic pseudovirus to quantify HIV entry into unstimulated endocervical CD4(+) T cells collected by cytobrush. Virus entry was threefold higher into cervix-derived CD4(+) T cells than blood, but was strongly correlated between these two compartments. Cervix-derived CD4(+) T cells expressing CD69, α(4)β(7), or α(4)β(1) were preferential HIV targets; this enhanced susceptibility was strongly correlated with increased CCR5 expression in α(4)β(7)(+) and CD69(+) CD4(+) T cells, and to a lesser extent in α(4)β(1)(+) CD4(+) T cells. Direct binding of gp140 to integrins was not observed, integrin inhibitors had no effect on virus entry, and pseudotypes with an env that preferentially binds α(4)β(7) still demonstrated enhanced entry into α(4)β(1)(+) cells. In summary, a rapid and sensitive HIV entry assay demonstrated enhanced susceptibility of activated endocervical CD4(+) T cells, and those expressing α(4)β(7) or α(4)β(1). This may relate to increased CCR5 expression by these cell subsets, but did not appear to be due to direct interaction of α(4)β(7) or α(4)β(1) with HIV envelope.

References

    1. Immunity. 2005 Feb;22(2):259-70
    1. J Virol. 2007 Oct;81(19):10209-19
    1. J Clin Microbiol. 1991 Feb;29(2):297-301
    1. Methods Mol Biol. 2004;263:333-44
    1. Methods Mol Biol. 2014;1087:3-12
    1. J Transl Med. 2011 Jan 27;9 Suppl 1:S2
    1. PLoS One. 2014 Jan 15;9(1):e85675
    1. Nature. 2005 Apr 28;434(7037):1093-7
    1. Nat Rev Immunol. 2008 Jun;8(6):447-57
    1. J Immunol. 2014 Jun 1;192(11):5074-82
    1. Eur J Immunol. 2013 Sep;43(9):2361-72
    1. AIDS. 2006 Jan 2;20(1):73-83
    1. Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5640-5
    1. Immunity. 2007 Feb;26(2):257-70
    1. AIDS. 2008 Oct 1;22(15):2049-51
    1. PLoS Pathog. 2012;8(5):e1002686
    1. Nat Immunol. 2008 Mar;9(3):301-9
    1. Science. 1999 Nov 12;286(5443):1353-7
    1. AIDS Res Hum Retroviruses. 2002 May 20;18(8):567-76
    1. Nat Med. 2014 Dec;20(12):1397-400
    1. PLoS Pathog. 2010 Apr 08;6(4):e1000852
    1. Nat Rev Immunol. 2005 Oct;5(10):783-92
    1. Cell. 1990 Feb 23;60(4):577-84
    1. J Reprod Immunol. 2013 Sep;99(1-2):80-7
    1. J Acquir Immune Defic Syndr. 2012 Mar 1;59(3):221-8
    1. PLoS Pathog. 2014 Dec 18;10(12):e1004567
    1. Nat Biotechnol. 2002 Nov;20(11):1151-4
    1. Curr Opin HIV AIDS. 2012 Mar;7(2):195-202
    1. Curr Mol Med. 2009 Sep;9(7):836-50
    1. Mucosal Immunol. 2014 Nov;7(6):1375-85
    1. J Virol. 2011 May;85(9):4409-20
    1. Mucosal Immunol. 2009 Sep;2(5):439-49
    1. J Immunol. 2011 Dec 1;187(11):6032-42
    1. PLoS Pathog. 2011 Feb;7(2):e1001301
    1. J Immunol. 2014 May 1;192(9):4284-93
    1. AIDS. 2009 Jan 28;23 (3):309-17
    1. PLoS Pathog. 2014 May 08;10(5):e1004092
    1. Mucosal Immunol. 2010 May;3(3):280-90
    1. Annu Rev Med. 2011;62:127-39
    1. Nat Rev Microbiol. 2006 Apr;4(4):312-7
    1. AIDS. 2009 Apr 27;23(7):761-9
    1. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1920-5

Source: PubMed

3
Iratkozz fel