Household air pollution from solid fuel use and risk of adverse pregnancy outcomes: a systematic review and meta-analysis of the empirical evidence

Adeladza K Amegah, Reginald Quansah, Jouni J K Jaakkola, Adeladza K Amegah, Reginald Quansah, Jouni J K Jaakkola

Abstract

Background: About 41% of households globally, mainly in developing countries rely on solid fuels for cooking with consequences for fetal growth and development. Previous reviews were limited in scope, assessing only two outcomes (birth weight, stillbirth). With important evidence accumulating, there is a need to improve the previous estimates and assess additional outcomes. We conducted a systematic review and meta-analysis to evaluate the quality and strength of available evidence on household air pollution (HAP) and the whole range of adverse pregnancy outcomes.

Methods: PubMed, Ovid Medline, Scopus and CINAHL were searched from their inception to the end of April 2013. All epidemiological study designs were eligible for inclusion in the review. The random-effects model was applied in computing the summary-effect estimates (EE) and their corresponding 95% confidence interval (CI).

Results: Of 1505 studies screened, 19 studies satisfied the inclusion criteria. Household combustion of solid fuels resulted in an 86.43 g (95% CI: 55.49, 117.37) reduction in birth weight, and a 35% (EE = 1.35, 95% CI: 1.23, 1.48) and 29% (EE = 1.29, 95% CI: 1.18, 1.41) increased risk of LBW and stillbirth respectively.

Conclusion: Combustion of solid fuels at home increases the risk of a wide range of adverse pregnancy outcomes. Access to clean household energy solutions is the surest way to combat HAP and mitigate their adverse effects.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Flowchart of search strategy and…
Figure 1. Flowchart of search strategy and selection of studies for inclusion in review.
Figure 2. Forest plot showing the effect…
Figure 2. Forest plot showing the effect of household solid fuel use on birth weight (A), low birth weight (B) and Stillbirth (C).
ES: effect size; CI: confidence interval.
Figure 3. Funnel plot for the relation…
Figure 3. Funnel plot for the relation between household solid fuel use and birth weight (A), low birth weight (B) and stillbirth (C).
Figure 4. Filled funnel plot for the…
Figure 4. Filled funnel plot for the relation between household solid fuel use and birth weight (A), low birth weight (B) and stillbirth (C).

References

    1. Bonjour S, Adair-Rohani H, Wolf J, Bruce NG, Mehta S, et al. (2013) Solid fuel use for household cooking: country and regional estimates for 1980–2010. Environ Health Perspect 121(7):784–790.
    1. Smith KR (2002) Indoor air pollution in developing countries: recommendations for research. Indoor Air 12:198–207.
    1. World Health Organization (WHO) (2014) Burden of disease from Household Air Pollution for 2012. Geneva: WHO. Available: . Accessed 2014 Apr 20.
    1. Smith KR, Mehta S, Feuz M (2004) Indoor air pollution from household use of solid fuels. In: Ezzati M, Rodgers A, Lopez AD, Murray, CJLeditors. Comparative quantification of health risk: Global and regional burden of disease due to selected major risk factors. Geneva: WHO.
    1. Dherani M, Pope D, Mascarenhas M, Smith KR, Weber M, et al. (2008) Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: a systematic review and meta-analysis. Bull World Health Organ 86:390–398.
    1. Kurmi OP, Semple S, Simkhada P, Smith WC, Ayres JG (2010) COPD and chronic bronchitis risk of indoor air pollution from solid fuel: a systematic review and meta-analysis. Thorax 65:221–228.
    1. Kurmi OP, Arya PH, Lam KB, Sorahan T, Ayres JG (2012) Lung cancer risk and solid fuel smoke exposure: a systematic review and meta-analysis. Eur Respir J 40:1228–1237.
    1. Maisonet M, Correa A, Misra D, Jaakkola JJ (2004) A review of the literature on the effects of ambient air pollution on fetal growth. Environ Res 95:106–115.
    1. Glinianaia SV, Rankin J, Bell R, Pless-Mulloli T, Howel D (2004) Particulate air pollution and fetal health: a systematic review of the epidemiologic evidence. Epidemiol 15:36–45.
    1. Lacasana M, Esplugues A, Ballester F (2005) Exposure to ambient air pollution and prenatal and early childhood health effects. Eur J Epidemiol 20(2):183–199.
    1. Sapkota A, Chelikowsky AP, Nachman KE, Cohen AJ, Ritz B (2012) Exposure to particulate matter and adverse birth outcomes: a comprehensive review and meta-analysis. Air Qual Atmos Health 5:369–381.
    1. Stieb DM, Chen L, Eshoul M, Judek S (2012) Ambient air pollution, birth weight and preterm birth: A systematic review and meta-analysis. Environ Res. 117:100–111.
    1. Pope DP, Mishra V, Thompson L, Siddiqui AR, Rehfuess EA, et al. (2010) Risk of low birth weight and stillbirth associated with indoor air pollution from solid fuel use in developing countries. Epidemiol Rev 32:70–81.
    1. Misra P, Srivastava R, Krishnan A, Sreenivaas V, Pandav CS (2012) Indoor air pollution-related acute lower respiratory infections and low birthweight: a systematic review. J Trop Pediatr 58(6):457–466.
    1. Bruce NG, Dherani MK, Das JK, Balakrishnan K, Adair-Rohani H, et al. (2013) Control of household air pollution for child survival: estimates for intervention impacts. BMC Public Health 13(Suppl 3): S8.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG. The PRISMA Group (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7):e1000097.
    1. Thompson LM, Bruce N, Eskenazi B, Diaz A, Pope D, et al. (2011) Impact of reduced maternal exposures to wood smoke from an introduced chimney stove on newborn birth weight in rural Guatemala. Environ Health Perspect 119:1489–1494.
    1. Epstein MB, Bates MN, Arora NK, Balakrishnan K, Jack DW, et al. (2013) Household fuels, low birth weight, and neonatal death in India: The separate impacts of biomass, kerosene, and coal. Int J Hyg Environ Health 216(5):523–532.
    1. Sreeramareddy CT, Shidhaye RR, Sathiakumar N (2011) Association between biomass fuel use and maternal report of child size at birth - an analysis of 2005–06 India Demographic Health Survey data. BMC Public Health 11:403.
    1. Lakshmi PVM, Virdi NK, Sharma A, Tripathy JP, Smith KR, et al. (2013) Household air pollution and stillbirths in India: Analysis of the DLHS-II National Survey. Environ Res 121:17–22.
    1. Mishra V, Retherford RD, Smith KR (2005) Cooking smoke and tobacco smoke as risk factors for stillbirth. Int J Environ Health Res 15:397–410.
    1. Tielsch JM, Katz J, Thulasiraj RD, Coles CL, Sheeladevi S, et al. (2009) Exposure to indoor biomass fuel and tobacco smoke and risk of adverse reproductive outcomes, mortality, respiratory morbidity and growth among newborn infants in south India. Int J Epidemiol 38:1351–1363.
    1. Yucra S, Tapia V, Steenland K, Naeher LP, Gonzales GF (2011) Association between biofuel exposure and adverse birth outcomes at high altitudes in Peru: a matched case-control study. Int J Occup Environ Health 17(4):307–313.
    1. Boy E, Bruce N, Delgado H (2002) Birth weight and exposure to kitchen wood smoke during pregnancy in Rural Guatemala. Environ Health Perspect 110:109–114.
    1. Siddiqui AR, Gold EB, Yang X, Lee K, Brown KH, et al. (2008) Prenatal exposure to wood fuel smoke and low birth weight. Environ Health Perspect 116:543–549.
    1. Li Z, Zhang L, Ye R, Pei L, Liu J, et al. (2011) Indoor air pollution from coal combustion and the risk of neural tube defects in a rural population in Shanxi Province, China. Am J Epidemiol 174(4):451–458.
    1. Abusalah A, Gavana M, Haidich AB, Smyrnakis E, Papadakis N, et al. (2012) Low birth weight and prenatal exposure to indoor pollution from tobacco smoke and wood fuel smoke: a matched case-control study in Gaza Strip. Matern Child Health J 16(8):1718–1727.
    1. Amegah AK, Jaakkola JJ, Quansah R, Norgbe GK, Dzodzomenyo M (2012) Cooking fuel choices and garbage burning practices as determinants of birth weight: a cross-sectional study in Accra, Ghana. Environ Health 11(1):78.
    1. Stanković A, Mitrović V, Živadinović R (2011a) Influence of air pollution on birth weight. Srp Arh Celok Lek 139(9–10):651–656.
    1. Mavalankar DV, Gray RH, Trivedi CR (1992) Risk factors for preterm and term low birthweight in Ahmedabad, India. Int J Epidemiol 21(2):263–272.
    1. Mishra V, Dai X, Smith KR, Mika L (2004) Maternal exposure to biomass smoke and reduced birth weight in Zimbabwe. Ann Epidemiol 14:740–747.
    1. Siddiqui AR, Gold EB, Brown KH, Lee K, Bhutta Z (2005) Preliminary analyses of indoor air pollution and low birth weight (LBW) in Southern Pakistan. In: Indoor Air Pollution from solid fuels and risk of low birth weight and stillbirth. Report from a symposium held at the Annual Conference of the International Society for Environmental Epidemiology (ISEE), Johannesburg, South Africa, 13–16 September 2005. Available: . Accessed 2013 May 5.
    1. Mavalankar DV, Trivedi CR, Gray RH (1991) Levels and risk factors for perinatal mortality in Ahmedabad, India. Bull World Health Organ 69(4):435–442.
    1. Stanković A, Mitrović V, Zivadinović R (2011) Influence of air pollution on pregnant women's health and pregnancy outcomes. Med Pregl 64(5–6):279–284.
    1. Samaraweera Y, Abeysena C (2010) Maternal sleep deprivation, sedentary lifestyle and cooking smoke: Risk factors for miscarriage: A case control study. Aust N Z J Obstet Gynaecol 50(4):352–357.
    1. Kadir MM, McClure EM, Goudar SS, Garces AL, Moore J, et al. (2010) Exposure of pregnant women to indoor air pollution: a study from nine low and middle income countries. Acta Obstet Gynecol Scand 89(4):540–548.
    1. Zulu LC, Richardson RB (2013) Charcoal, livelihoods, and poverty reduction: Evidence from sub-Saharan Africa. Energy Sustain Dev 17(2):127–137.
    1. Salmasi G, Grady R, Jones J, McDonald SD. Knowledge Synthesis Group (2010) Environmental tobacco smoke exposure and perinatal outcomes: a systematic review and meta-analyses. Acta Obstet Gynecol Scand 89(4):423–441.
    1. Leonardi-Bee J, Britton J, Venn A (2011) Secondhand smoke and adverse fetal outcomes in nonsmoking pregnant women: a meta-analysis. Pediatr 127(4):734–741.
    1. Mishra V (2004) What do we know about health effects of smoke from solid fuels combustion? East-West Center Working Papers: Population and Health Series 117 Available: . Accessed 2013 Sep 20.
    1. Perera FP, Jedrychowski W, Rauh V, Whyatt RM (1999) Molecular epidemiologic research on the effect of environmental pollutants on the fetus. Environ Health Perspect 107:451–460.
    1. Calabrese EJ (1986) Age and susceptibility to toxic substances. New York: Wiley & Sons.
    1. Salam MT, Millstein J, Li YF, Lurmann FW, Margolis HG, et al. (2005) Birth outcomes and prenatal exposure to ozone, carbon monoxide, and particulate matter: results from the Children's Health Study. Environ Health Perspect. 113(11):1638–1644.
    1. Sangalli MR, Mclean AJ, Peek MJ, Rivory LP, Le Couteur DG (2003) Carbon monoxide disposition and permeability-surface area product in the foetal circulation of the perfused term human placenta. Placenta 24(1):8–11.
    1. Longo LD (1977) The biological effects of carbon monoxide on the pregnant woman, fetus, and newborn infant. Am J Obstet Gynecol 129(1):69–103.
    1. Di Cera E, Doyle ML, Morgan MS, De Cristofaro R, Landolfi R, et al. (1989) Carbon monoxide and oxygen binding to human hemoglobin F0. Biochem 28(6):2631–2638.
    1. Bosley ARJ, Sibert JR, Newcombe RG (1981) Effects of maternal smoking on fetal growth and nutrition. Arch Dis Child 56:727–729.
    1. Kannan S, Misra DP, Dvonch JT, Krishnakumar A (2006) Exposures to airborne particulate matter and adverse perinatal outcomes: a biologically plausible mechanistic framework for exploring potential effect modification by nutrition. Environ Health Perspect 114(11):1636–1642.
    1. Dejmek J, Solanský I, Benes I, Lenícek J, Srám RJ (2000) The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ Health Perspect 108(12):1159–1164.
    1. Carpenter DO, Arcaro K, Spink DC (2002) Understanding the human health effects of chemical mixtures. Environ Health Perspect 110(suppl 1): 25–42.
    1. Bui QQ, Tran MB, West WL (1986) A comparative study of the reproductive effects of methadone and benzo[a]pyrene in the pregnant and pseudopregnant rat. Toxicol 42:195–204.
    1. Nicol CJ, Harrison ML, Laposa RR, Gimelshtein IL, Wells PG (1995) A teratologic suppressor role for p53 in benzo[a]pyrene-treated transgenic p53-deficient mice. Nat Genet 10:181–187.

Source: PubMed

3
Iratkozz fel