A Backward Walking Training Program to Improve Balance and Mobility in Children with Cerebral Palsy

Ji-Young Choi, Sung-Min Son, Se-Hee Park, Ji-Young Choi, Sung-Min Son, Se-Hee Park

Abstract

Background: We studied the effects of motor tasks using backward walking training on balance and gait functions of children with cerebral palsy. This was a single-blinded, randomized controlled trial with a crossover design conducted at a single facility.

Methods: Among 12 children with cerebral palsy, the forward (FWG) (n = 6) and backward walking groups (BWG) (n = 6) underwent training three times a week for 4 weeks, 40 min a day. After a 6-week break, the crossover training was conducted. Functional walking variables were measured. Time-Up-and-Go (TUG) test, Figure-8 Walk Test (FW8T), and Pediatric Balance Scale (PBS) were used for measuring balance.

Results: Both groups showed significant improvement in walking speed, stride length, and step length. The BWG demonstrated significant improvement in walking speed (p < 0.05) compared with the FWG. The TUG test, FW8T, and PBS showed significant improvement. After the 4-week intervention, both groups displayed a remarkable decrease in TUG duration and FW8T. Both groups also exhibited improvement in the PBS; more so in the BWG.

Conclusions: Backward walking training with motor dual tasks could be a more effective interventional approach than forward walking training to improve balance and walking functions of children with spastic hemiplegia.

Keywords: backward walking; balance; cerebral palsy.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart in this study. Assessment A, B: Time Up and Go, Figure-8 Walk Test, Pediatric Balance Scale, Opto gait.

References

    1. Freeman M. Physical Therapy of Cerebral Palsy. Springer Science & Business Media; Berlin, Germany: 2007.
    1. Rosenbaum P., Paneth N., Leviton A., Goldstein M., Bax M., Damiano D., Dan B., Jacobsson B. A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. Suppl. 2007;109:8–14.
    1. Oeffinger D.J., Tylkowski C.M., Rayens M.K., Davis R.F., Gorton G.E., 3rd, D’Astous J., Nicholson D.E., Damiano D.L., Abel M.F., Bagley A.M., et al. Gross Motor Function Classification System and outcome tools for assessing ambulatory cerebral palsy: A multicenter study. Dev. Med. Child Neurol. 2004;46:311–319. doi: 10.1111/j.1469-8749.2004.tb00491.x.
    1. Salminen A.L., Brandt A., Samuelsson K., Töytäri O., Malmivaara A. Mobility devices to promote activity and participa-tion: A systematic review. J. Rehabil. Med. 2009;41:697–706. doi: 10.2340/16501977-0427.
    1. Roos P.E., Barton N., van Deursen R.W. Patellofemoral joint compression forces in backward and forward running. J. Biomech. 2012;45:1656–1660. doi: 10.1016/j.jbiomech.2012.03.020.
    1. Michaelsen S.M., Ovando A.C., Romaguera F., Ada L. Effect of Backward Walking Treadmill Training on Walking Capacity after Stroke: A Randomized Clinical Trial. Int. J. Stroke. 2014;9:529–532. doi: 10.1111/ijs.12255.
    1. Blundell S.W., Shepherd R.B., Dean C., Adams R.D., Cahill B.M. Functional strength training in cerebral palsy: A pilot study of a group circuit training class for children aged 4–8 years. Clin. Rehabil. 2003;17:48–57. doi: 10.1191/0269215503cr584oa.
    1. Agmon M., Belza B., Nguyen H.Q., Logsdon R., Kelly V.E. A systematic review of interventions conducted in clinical or community settings to improve dual-task postural control in older adults. Clin. Interv. Aging. 2014;9:477–492. doi: 10.2147/CIA.S54978.
    1. Mulder T., Zijlstra W., Geurts A. Assessment of motor recovery and decline. Gait Posture. 2002;16:198–210. doi: 10.1016/S0966-6362(01)00157-6.
    1. Haggard P., Cockburn J., Cock J., Fordham C., Wade D. Interference between gait and cognitive tasks in a rehabilitating neurological population. J. Neurol. Neurosurg. Psychiatry. 2000;69:479–486. doi: 10.1136/jnnp.69.4.479.
    1. Page S.J., Levine P., Sisto S., Johnston M.V. A randomized efficacy and feasibility study of imagery in acute stroke. Clin. Rehabil. 2001;15:233–240. doi: 10.1191/026921501672063235.
    1. Bond J.M., Morris M. Goal-directed secondary motor tasks: Their effects on gait in subjects with Parkinson disease. Arch. Phys. Med. Rehabil. 2000;81:110–116. doi: 10.1016/S0003-9993(00)90230-2.
    1. El-Basatiny H.M.Y., Abdel-aziem A.A. Effect of backward walking training on postural balance in children with hemipa-retic cerebral palsy: A randomized controlled study. Clin. Rehabil. 2015;29:457–467. doi: 10.1177/0269215514547654.
    1. Yang Y.-R., Wang R.-Y., Chen Y.-C., Kao M.-J. Dual-Task Exercise Improves Walking Ability in Chronic Stroke: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2007;88:1236–1240. doi: 10.1016/j.apmr.2007.06.762.
    1. Davies P.M. Right in the Middle: Selective Trunk Activity in the Treatment of Adult Hemiplegia. Springer Science & Business Media; Heidelberg, Germany: 1990.
    1. Wood E., Rosenbaum P. The gross motor function classification system for cerebral palsy: A study of reliability and stability over time. Dev. Med. Child Neurol. 2000;42:292–296. doi: 10.1017/S0012162200000529.
    1. Ottenbacher K., Taylor E.T., Msall M.E., Braun S., Lane S.J., Granger C.V., Lyons N., Duffy L.C. The stability and equivalence reliability of the functional independence measure for children (weefim)®. Dev. Med. Child Neurol. 2008;38:907–916. doi: 10.1111/j.1469-8749.1996.tb15047.x.
    1. Sperle P.A., Ottenbacher K.J., Braun S.L., Lane S.J., Nochajski S. Equivalency reliability of the Functional Independence Measure for Children (WeeFIM) administration methods. Am. J. Occup. 1997;51:35–41. doi: 10.5014/ajot.51.1.35.
    1. Podsiadlo D., Richardson S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991;39:142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x.
    1. Hess R.J., Brach J.S., Piva S.R., VanSwearingen J.M. Walking skill can be assessed in older adults: Validity of the Fig-ure-of-8 Walk Test. Phys. Ther. 2010;90:89–99. doi: 10.2522/ptj.20080121.
    1. Franjoine M.R., Gunther J.S., Taylor M.J. Pediatric Balance Scale: A Modified Version of the Berg Balance Scale for the School-Age Child with Mild to Moderate Motor Impairment. Pediatr. Phys. Ther. 2003;15:114–128. doi: 10.1097/01.PEP.0000068117.48023.18.
    1. Gan S.-M., Tung L.-C., Tang Y.-H., Wang C.-H. Psychometric Properties of Functional Balance Assessment in Children with Cerebral Palsy. Neurorehabilit. Neural. Repair. 2008;22:745–753. doi: 10.1177/1545968308316474.
    1. Katsavelis D., Mukherjee M., Decker L., Stergiou N. Variability of lower extremity joint kinematics during backward walking in a virtual environment. Nonlinear Dyn. Psychol. Life Sci. 2010;14:165–178.
    1. Winter D.A., Pluck N., Yang J.F. Backward Walking: A Simple Reversal of Forward Walking? J. Mot. Behav. 1989;21:291–305. doi: 10.1080/00222895.1989.10735483.
    1. Foster H., DeMark L., Spigel P.M., Rose D.K., Fox E.J. The effects of backward walking training on balance and mobility in an individual with chronic incomplete spinal cord injury: A case report. Physiother. Theory Pract. 2016;32:536–545. doi: 10.1080/09593985.2016.1206155.
    1. Rose D.K., DeMark L., Fox E.J., Clark D.J., Wludyka P. A Backward Walking Training Program to Improve Balance and Mobility in Acute Stroke: A Pilot Randomized Controlled Trial. J. Neurol. Phys. Ther. 2018;42:12–21. doi: 10.1097/NPT.0000000000000210.
    1. Moriello G., Pathare N., Cirone C., Pastore D., Shears D., Sulehri S. Comparison of forward versus backward walking using body weight supported treadmill training in an individual with a spinal cord injury: A single subject design. Physiother. Theory Pract. 2013;30:29–37. doi: 10.3109/09593985.2013.798845.
    1. Bonan I., Marquer A., Eskiizmirliler S., Yelnik A., Vidal P.-P. Sensory reweighting in controls and stroke patients. Clin. Neurophysiol. 2013;124:713–722. doi: 10.1016/j.clinph.2012.09.019.
    1. DeVita P., Stribling J. Lower extremity joint kinetics and energetics during backward running. Med. Sci. Sports Exerc. 1991;23:602–610. doi: 10.1249/00005768-199105000-00013.
    1. Eilam D., Adijes M., Vilensky J. Uphill locomotion in mole rats: A possible advantage of backward locomotion. Physiol. Behav. 1995;58:483–489. doi: 10.1016/0031-9384(95)00076-U.
    1. Vilensky J., Gankiewicz E., Gehlsen G. A kinematic comparison of backward and forward walking in humans. J. Hum. Mov. Stud. 1987;13:29–50.
    1. Grasso R., Bianchi L., Lacquaniti F. Motor Patterns for Human Gait: Backward Versus Forward Locomotion. J. Neurophysiol. 1998;80:1868–1885. doi: 10.1152/jn.1998.80.4.1868.
    1. Flynn T.W., Connery S.M., Smutok M.A., Zeballos R.J., Weisman I.M. Comparison of cardiopul-monary responses to forward and backward walking and running. Med. Sci. Sports Exerc. 1994;26:89–94. doi: 10.1249/00005768-199401000-00015.
    1. Shumway-Cook A., Woollacott M. Motor Control. 4th ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2011.
    1. Mullie Y., Duclos C. Role of proprioceptive information to control balance during gait in healthy and hemiparetic indi-viduals. Gait Posture. 2014;40:610–615. doi: 10.1016/j.gaitpost.2014.07.008.
    1. Peters S., Handy T.C., Lakhani B., Boyd L.A., Garland S.J. Motor and Visuospatial Attention and Motor Planning After Stroke: Considerations for the Rehabilitation of Standing Balance and Gait. Phys. Ther. 2015;95:1423–1432. doi: 10.2522/ptj.20140492.
    1. Kurz M.J., Wilson T.W., Arpin D.J. Stride-time variability and sensorimotor cortical activation during walking. NeuroImage. 2012;59:1602–1607. doi: 10.1016/j.neuroimage.2011.08.084.

Source: PubMed

3
Iratkozz fel