Echocardiography: a help in the weaning process

Vincent Caille, Jean-Bernard Amiel, Cyril Charron, Guillaume Belliard, Antoine Vieillard-Baron, Philippe Vignon, Vincent Caille, Jean-Bernard Amiel, Cyril Charron, Guillaume Belliard, Antoine Vieillard-Baron, Philippe Vignon

Abstract

Introduction: To evaluate the ability of transthoracic echocardiography (TTE) to detect the effects of spontaneous breathing trial (SBT) on central hemodynamics and to identify indices predictive of cardiac-related weaning failure.

Methods: TTE was performed just before and at the end of a 30-min SBT in 117 patients fulfilling weaning criteria. Maximal velocities of mitral E and A waves, deceleration time of E wave (DTE), maximal velocity of E' wave (tissue Doppler at the lateral mitral annulus), and left ventricular (LV) stroke volume were measured. Values of TTE parameters were compared between baseline (pressure support ventilation) and SBT in all patients and according to LV ejection fraction (EF): >50% (n = 58), 35% to 50% (n = 30), and <35% (n = 29). Baseline TTE indices were also compared between patients who were weaned (n = 94) and those who failed (n = 23).

Results: Weaning failure was of cardiac origin in 20/23 patients (87%). SBT resulted in a significant increase in cardiac output and E/A, and a shortened DTE. At baseline, DTE was significantly shorter in patients with LVEF <35% when compared to other subgroups (median [25th-75th percentiles]: 119 ms [90-153]; vs. 187 ms [144-224] vs. 174 ms [152-193]; P < 0.01) and E/E' was greater (7.9 [5.4-9.1] vs. 6.0 [5.3-9.0] vs. 5.2 [4.7-6.0]; P < 0.01). When compared to patients who were successfully weaned, those patients who failed exhibited at baseline a significantly lower LVEF (36% [27-55] vs. 51% [43-55]: P = 0.04) and higher E/E' (7.0 [5.0-9.2] vs. 5.6 [5.2-6.3]: P = 0.04).

Conclusions: TTE detects SBT-induced changes in central hemodynamics. When performed by an experienced operator prior to SBT, TTE helps in identifying patients at high risk of cardiac-related weaning failure when documenting a depressed LVEF, shortened DTE and increased E/E'. Further studies are needed to evaluate the impact of this screening strategy on the weaning process and patient outcome.

References

    1. Boles JM, Bion J, Connors A, Herridge M, Melot C, Pearl R, Silverman H, Stanchina M, Vieillard-Baron A, Welte T. Statement of the sixth international consensus conference on intensive care medicine. Weaning from mechanical ventilation. Eur Respir J. 2007;29:1033–1056. doi: 10.1183/09031936.00010206.
    1. Esteban A, Anzueto A, Frutos F, Alia I, Brochard L, Stewart TE, Benitos S, Epstein SK, Apezleguia C, Nightingale P, Arroliga AC, Tobin MJ. Mechanical Ventilation International Study Group. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA. 2002;287:345–355. doi: 10.1001/jama.287.3.345.
    1. Torres A, Gatell JM, Aznar E, El-Ebiary M, Puig de la Bellacasa J, Gonzalez J, Ferrer M, Rodriguez-Roisin R. Re-intubation increases the risk for nosocomial pneumonia in patients needing mechanical ventilation. Am J Respir Crit Care Med. 1995;152:137–141.
    1. Pinsky MR. Breathing as exercise: the cardiovascular response to weaning from mechanical ventilation. Intensive Care Med. 2000;26:1164–1166. doi: 10.1007/s001340000619.
    1. Richard C, Teboul JL, Archambaud F, Hebert JL, Michaut P, Auzepy P. Left ventricular function during weaning of patients with chronic obstructive pulmonary disease. Intensive Care Med. 1994;20:181–186. doi: 10.1007/BF01704697.
    1. Lemaire F, Teboul JL, Cinotti L, Giotto G, Abrouk F, Steg G, Macquin-Mavier I, Zapol WM. Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology. 1988;69:171–179. doi: 10.1097/00000542-198808000-00004.
    1. Hurford WE, Favorito F. Association of myocardial ischemia with failure to wean from mechanical ventilation. Crit Care Med. 1995;23:1475–1480. doi: 10.1097/00003246-199509000-00006.
    1. Jubran A, Mathru M, Dries D, Tobin MJ. Continuous recordings of mixed venous oxygen saturation during weaning from mechanical ventilation and the ramifications thereof. Am J Respir Crit Care Med. 1998;158:1763–1769.
    1. Richard C, Teboul JL. Weaning failure from cardiovascular origin. Intensive Care Med. 2005;31:1605–1607. doi: 10.1007/s00134-005-2698-x.
    1. Al-Kharrat T, Zarich S, Manthous CA. Analysis of observer variability in measurement of pulmonary artery occlusion pressures. Am J Respir Crit Care Med. 1999;160:415–420.
    1. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–2963. doi: 10.1001/jama.270.24.2957.
    1. Quinones MA, Douglas PS, Foster E, Gorcsan J, Lewis JF, Pearlman AS, Rychik J, Salcedo EE, Seward JB, Stevenson JG, Thys DM, Weitz HH, Zoghbi WA. ACC/AHA clinical competence statement on echocardiography: a report of the American College of Cardiology/American Heart Association/American College of Physicians-American Society of Internal Medicine Task Force on Clinical Competence. J Am Coll Cardiol. 2003;41:687–708. doi: 10.1016/S0735-1097(02)02885-1.
    1. Jardin F, Dubourg O, Bourdarias JP. Echocardiographic pattern of acute cor pulmonale. Chest. 1997;111:209–217. doi: 10.1378/chest.111.1.209.
    1. Appleton CP, Hatle L, Popp R. Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined hemodynamic and Doppler echocardiographic study. J Am Coll Cardiol. 1988;12:426–440. doi: 10.1016/0735-1097(88)90416-0.
    1. Ommen SR, Nishimura RA, Appleton CP. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation. 2000;102:1788–1794.
    1. Zoghbi WA, Quinones MA. Determination of cardiac output by Doppler echocardiography: a critical appraisal. Herz. 1986;11:258–268.
    1. Vignon P, Allot V, Lesage J, Martaillé JF, Aldigier JC, François B, Gastinne H. Diagnosis of left ventricular diastolic dysfunction in the setting of acute changes in loading conditions. Crit Care. 2007;11:R43. doi: 10.1186/cc5736.
    1. Ait-Oufella H, Tharaux PL, Baudel JL, Vandermeersch S, Meyer P, Tonnellier M, Dussaule JC, Guidet B, Offenstadt G, Maury E. Variations in natriuretic peptides and mitral flow indexes during successful ventilatory weaning: a preliminary study. Intensive Care Med. 2007;33:1183–1186. doi: 10.1007/s00134-007-0627-x.
    1. Aurigemma GP, Gaasch WH. Clinical practice. Diastolic heart failure. N Engl J Med. 2004;351:1097–1105. doi: 10.1056/NEJMcp022709.
    1. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quinones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30:1527–1533. doi: 10.1016/S0735-1097(97)00344-6.
    1. Vignon P, Ait Hassan A, François B, Preux PM, Pichon N, Clavel M, Frat JP, Gastinne H. Echocardiographic assessment of pulmonary artery occlusion pressure in ventilated patients: a transoesophageal study. Crit Care. 2008;12:R18. doi: 10.1186/cc6792.
    1. Lamia B, Maizel J, Ochagavia A, Chemla D, Osman D, Richard C, Teboul JL. Echocardiographic diagnosis of pulmonary artery occlusion pressure elevation during weaning from mechanical ventilation. Crit Care Med. 2009;37:1696–1701. doi: 10.1097/CCM.0b013e31819f13d0.
    1. Mekontso-Dessap A, de Prost N, Girou E, Braconnier F, Lemaire F, Brun-Buisson C, Brochard L. B-type natriuretic peptide and weaning from mechanical ventilation. Intensive Care Med. 2006;32:1529–1536. doi: 10.1007/s00134-006-0339-7.
    1. Grasso S, Leone A, De Michele M, Anaclerio R, Cafarelli A, Ancona G, Stripoli T, Bruno F, Pugliese P, Dambrosio M, Dalfinol L, Di Serio F, Fiore T. Use of N-terminal pro-brain natriuretic peptide to detect acute cardiac dysfunction during weaning failure in difficult-to-wean patients with chronic obstructive pulmonary disease. Crit Care Med. 2007;35:96–105. doi: 10.1097/01.CCM.0000250391.89780.64.
    1. Mayo PH, Beaulieu Y, Doelken P, Feller-Kopman D, Harrod C, Kaplan A, Oropello J, Vieillard-Baron A, Axler O, Lichtenstein D, Maury E, Slama M, Vignon P. American College of Chest Physicians/La Société de Réanimation de Langue Française statement on competence in critical care ultrasonography. Chest. 2009;135:1050–1060. doi: 10.1378/chest.08-2305.
    1. Nagueh SF, Kopelen HA, Quinones MA. Assessment of left ventricular filling pressures by Doppler in the presence of atrial fibrillation. Circulation. 1996;94:2138–2145.
    1. Sohn DW, Song JM, Zo JH, Chai IH, Kim HS, Chun HG, Kim HC. Mitral Annulus velocity in the evaluation of left ventricular diastolic function in atrial fibrillation. J Am Soc Echocardiogr. 1999;12:927–931. doi: 10.1016/S0894-7317(99)70145-8.

Source: PubMed

3
Iratkozz fel