Clinical review: the ABC of weaning failure--a structured approach

Leo M Heunks, Johannes G van der Hoeven, Leo M Heunks, Johannes G van der Hoeven

Abstract

About 20% to 30% of patients are difficult to wean from invasive mechanical ventilation. The pathophysiology of difficult weaning is complex. Accordingly, determining the reason for difficult weaning and subsequently developing a treatment strategy require a dedicated clinician with in-depth knowledge of the pathophysiology of weaning failure. This review presents a structural framework ('ABCDE') for the assessment and treatment of difficult-to-wean patients. Earlier recognition of the underlying causes may expedite weaning from mechanical ventilation.

Figures

Figure 1
Figure 1
Framework for the evaluation of difficult-to-wean patients. For each patient, diagnostics as described in the white box should be performed to assess the reasons(s) for difficult weaning. Endocrine dysfunction is probably relatively rare and therefore is not included in the first line of evaluation. Possible treatment/interventions are mentioned but, of course, need to be individualized. If the first-line evaluation does not improve weaning, proceed to the next level (within the affected column). For instance, if airway resistance is elevated but is not affected by albuterol and optimizing ventilator settings, diagnostic bronchoscopy should be performed to visualize the central airways. Risks and benefits should be weighed in each patient. ACTH, adrenocorticotrophic hormone; BNP, brain natriuretcic peptide; CAM-ICU, confusion assessment method for the intensive care unit; DO2, oxygen delivery; ECG, electrocardiogram; EIC, end inspiratory cycling; EMG, electromyography; iv, intravenous; P0.1, airway occlusion pressure at 100 ms; PEEPi, intrinsic positive end-expiratory pressure; Pi, inspiratory pressure; PSV, pressure support ventilation; SBT, spontaneous-breathing trial; SvO2, mixed venous oxygen saturation.
Figure 2
Figure 2
Tracings obtained from ventilator while operating in the volume-controlled mode. Flow, pressure, and volume in time are presented from top to bottom. The dashed circle in the upper panel shows the truncated expiratory flow tracing, indicating intrinsic positive end-expiratory pressure (PEEP). Indeed, when expiration is interrupted (red solid arrow) after the next inspiration, airway pressure rises (middle panel), reflecting total PEEP (applied PEEP and intrinsic PEEP). To measure respiratory resistance, inspiratory hold is applied (red dotted arrow), resulting in rapid decay in airway pressure from peak to P1 and a subsequent slow decay to plateau pressure (P,plat).

References

    1. Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, Pearl R, Silverman H, Stanchina M, Vieillard-Baron A, Welte T. Weaning from mechanical ventilation. Eur Respir J. 2007;29:1033–1056. doi: 10.1183/09031936.00010206.
    1. Tobin MJ, Jubran A. In: Principles and Practice of Mechanical Ventilation. 2. Tobin MJ, editor. New York: McGraw-Hill; 2006. Weaning from mechanical ventilation; pp. 1185–1220.
    1. Esteban A, Frutos F, Tobin MJ, Alia I, Solsona JF, Valverdu I, Fernandez R, de la Cal MA, Benito S, Tomas R. A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure Collaborative Group. N Engl J Med. 1995;332:345–350. doi: 10.1056/NEJM199502093320601.
    1. Vitacca M, Vianello A, Colombo D, Clini E, Porta R, Bianchi L, Arcaro G, Vitale G, Guffanti E, Lo Coco A, Ambrosino N. Comparison of two methods for weaning patients with chronic obstructive pulmonary disease requiring mechanical ventilation for more than 15 days. Am J Respir Crit Care Med. 2001;164:225–230.
    1. Brochard L, Rauss A, Benito S, Conti G, Mancebo J, Rekik N, Gasparetto A, Lemaire F. Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med. 1994;150:896–903.
    1. Carley S, Driscoll P. Trauma education. Resuscitation. 2001;48:47–56. doi: 10.1016/S0300-9572(00)00317-8.
    1. Rumbak MJ, Walsh FW, Anderson WM, Rolfe MW, Solomon DA. Significant tracheal obstruction causing failure to wean in patients requiring prolonged mechanical ventilation: a forgotten complication of long-term mechanical ventilation. Chest. 1999;115:1092–1095. doi: 10.1378/chest.115.4.1092.
    1. Wilson AM, Gray DM, Thomas JG. Increases in endotracheal tube resistance are unpredictable relative to duration of intubation. Chest. 2009;136:1006–1013. doi: 10.1378/chest.08-1938.
    1. Ishaaya AM, Nathan SD, Belman MJ. Work of breathing after extubation. Chest. 1995;107:204–209. doi: 10.1378/chest.107.1.204.
    1. Vassilakopoulos T, Zakynthinos S, Roussos C. The tension-time index and the frequency/tidal volume ratio are the major pathophysiologic determinants of weaning failure and success. Am J Respir Crit Care Med. 1998;158:378–385.
    1. Jubran A, Tobin MJ. Pathophysiologic basis of acute respiratory distress in patients who fail a trial of weaning from mechanical ventilation. Am J Respir Crit Care Med. 1997;155:906–915.
    1. de Wit M, Miller KB, Green DA, Ostman HE, Gennings C, Epstein SK. Ineffective triggering predicts increased duration of mechanical ventilation. Crit Care Med. 2009;37:2740–2745. doi: 10.1097/CCM.0b013e3181a98a05.
    1. Chiumello D, Polli F, Tallarini F, Chierichetti M, Motta G, Azzari S, Colombo R, Rech R, Pelosi P, Raimondi F, Gattinoni L. Effect of different cycling-off criteria and positive end-expiratory pressure during pressure support ventilation in patients with chronic obstructive pulmonary disease. Crit Care Med. 2007;35:2547–2552. doi: 10.1097/01.CCM.0000287594.80110.34.
    1. Guerin C, Milic-Emili J, Fournier G. Effect of PEEP on work of breathing in mechanically ventilated COPD patients. Intensive Care Med. 2000;26:1207–1214. doi: 10.1007/s001340051339.
    1. Georgopoulos D, Mouloudi E, Kondili E, Klimathianaki M. Bronchodilator delivery with metered-dose inhaler during mechanical ventilation. Crit Care. 2000;4:227–234. doi: 10.1186/cc698.
    1. Malliotakis P, Linardakis M, Gavriilidis G, Georgopoulos D. Duration of salmeterol-induced bronchodilation in mechanically ventilated chronic obstructive pulmonary disease patients: a prospective clinical study. Crit Care. 2008;12:R140. doi: 10.1186/cc7117.
    1. Tobin MJ, Perez W, Guenther SM, Semmes BJ, Mador MJ, Allen SJ, Lodato RF, Dantzker DR. The pattern of breathing during successful and unsuccessful trials of weaning from mechanical ventilation. Am Rev Respir Dis. 1986;134:1111–1118.
    1. Le Bourdellès G, Mier L, Fiquet B, Djedaïni K, Saumon G, Coste F, Dreyfuss D. Comparison of the effects of heat and moisture exchangers and heated humidifiers on ventilation and gas exchange during weaning trials from mechanical ventilation. Chest. 1996;110:1294–1298. doi: 10.1378/chest.110.5.1294.
    1. Salam A, Tilluckdharry L, Moateng-Adjepong Y, Manthous CA. Neurologic status, cough, secretions and extubation outcomes. Intensive Care Med. 2004;30:1334–1339. doi: 10.1007/s00134-004-2231-7.
    1. Rothenhäusler HB, Ehrentraut S, von Degenfeld G, Weis M, Tichy M, Kilger E, Stoll C, Schelling G, Kapfhammer HP. Treatment of depression with methylphenidate in patients difficult to wean from mechanical ventilation in the intensive care unit. J Clin Psychiatry. 2000;61:750–755. doi: 10.4088/JCP.v61n1007.
    1. Ely EW, Inouye SK, Bernard GR, Gordon S, Francis J, May L, Truman B, Speroff T, Gautam S, Margolin R, Hart RP, Dittus R. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU) JAMA. 2001;286:2703–2710. doi: 10.1001/jama.286.21.2703.
    1. Bergeron N, Dubois MJ, Dumont M, Dial S, Skrobik Y. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. Intensive Care Med. 2001;27:859–864. doi: 10.1007/s001340100909.
    1. Inouye SK, Bogardus ST Jr, Charpentier PA, Leo-Summers L, Acampora D, Holford TR, Cooney LM Jr. A multicomponent intervention to prevent delirium in hospitalized older patients. N Engl J Med. 1999;340:669–676. doi: 10.1056/NEJM199903043400901.
    1. Marcantonio ER, Goldman L, Mangione CM, Ludwig LE, Muraca B, Haslauer CM, Donaldson MC, Whittemore AD, Sugarbaker DJ, Poss R. A clinical prediction rule for delirium after elective noncardiac surgery. JAMA. 1994;271:134–139. doi: 10.1001/jama.271.2.134.
    1. Riker RR, Shehabi Y, Bokesch PM, Ceraso D, Wisemandle W, Koura F, Whitten P, Margolis BD, Byrne DW, Ely EW, Rocha MG. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301:489–499. doi: 10.1001/jama.2009.56.
    1. Girard TD, Kress JP, Fuchs BD, Thomason JW, Schweickert WD, Pun BT, Taichman DB, Dunn JG, Pohlman AS, Kinniry PA, Jackson JC, Canonico AE, Light RW, Shintani AK, Thompson JL, Gordon SM, Hall JB, Dittus RS, Bernard GR, Ely EW. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet. 2008;371:126–134. doi: 10.1016/S0140-6736(08)60105-1.
    1. Jubran A, Lawm G, Kelly J, Duffner LA, Gungor G, Collins EG, Lanuza DM, Hoffman LA, Tobin MJ. Depressive disorders during weaning from prolonged mechanical ventilation. Intensive Care Med. 2010;36:828–835. doi: 10.1007/s00134-010-1842-4.
    1. Cabello B, Thille AW, Drouot X, Galia F, Mancebo J, d'Ortho MP, Brochard L. Sleep quality in mechanically ventilated patients: comparison of three ventilatory modes. Crit Care Med. 2008;36:1749–1755. doi: 10.1097/CCM.0b013e3181743f41.
    1. Parthasarathy S, Tobin MJ. Effect of ventilator mode on sleep quality in critically ill patients. Am J Respir Crit Care Med. 2002;166:1423–1429. doi: 10.1164/rccm.200209-999OC.
    1. Richard C, Teboul JL, Archambaud F, Hebert JL, Michaut P, Auzepy P. Left ventricular function during weaning of patients with chronic obstructive pulmonary disease. Intensive Care Med. 1994;20:181–186. doi: 10.1007/BF01704697.
    1. Lemaire F, Teboul JL, Cinotti L, Giotto G, Abrouk F, Steg G, Quin-Mavier I, Zapol WM. Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology. 1988;69:171–179. doi: 10.1097/00000542-198808000-00004.
    1. Jubran A, Mathru M, Dries D, Tobin MJ. Continuous recordings of mixed venous oxygen saturation during weaning from mechanical ventilation and the ramifications thereof. Am J Respir Crit Care Med. 1998;158:1763–1769.
    1. Chien JY, Lin MS, Huang YC, Chien YF, Yu CJ, Yang PC. Changes in B-type natriuretic peptide improve weaning outcome predicted by spontaneous breathing trial. Crit Care Med. 2008;36:1421–1426. doi: 10.1097/CCM.0b013e31816f49ac.
    1. Casaburi R, Daly J, Hansen JE, Effros RM. Abrupt changes in mixed venous blood gas composition after the onset of exercise. J Appl Physiol. 1989;67:1106–1112.
    1. Zakynthinos S, Routsi C, Vassilakopoulos T, Kaltsas P, Zakynthinos E, Kazi D, Roussos C. Differential cardiovascular responses during weaning failure: effects on tissue oxygenation and lactate. Intensive Care Med. 2005;31:1634–1642. doi: 10.1007/s00134-005-2699-9.
    1. Jardin F, Vieillard-Baron A. Weaning failure from cardiovascular origin. Intensive Care Med. 2006;32:937. doi: 10.1007/s00134-006-0145-2.
    1. Mebazaa A, Nieminen MS, Packer M, Cohen-Solal A, Kleber FX, Pocock SJ, Thakkar R, Padley RJ, Poder P, Kivikko M. Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE Randomized Trial. JAMA. 2007;297:1883–1891. doi: 10.1001/jama.297.17.1883.
    1. Sterba M, Banerjee A, Mudaliar Y. Prospective observational study of levosimendan and weaning of difficult-to-wean ventilator dependent intensive care patients. Crit Care Resusc. 2008;10:182–186.
    1. van Hees HW, Dekhuijzen PN, Heunks LM. Levosimendan enhances force generation of diaphragm muscle from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009;179:41–47. doi: 10.1164/rccm.200805-732OC.
    1. Latronico N, Fenzi F, Recupero D, Guarneri B, Tomelleri G, Tonin P, De MG, Antonini L, Rizzuto N, Candiani A. Critical illness myopathy and neuropathy. Lancet. 1996;347:1579–1582. doi: 10.1016/S0140-6736(96)91074-0.
    1. Laghi F, Cattapan SE, Jubran A, Parthasarathy S, Warshawsky P, Choi YS, Tobin MJ. Is weaning failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med. 2003;167:120–127. doi: 10.1164/rccm.200210-1246OC.
    1. Mills GH, Kyroussis D, Hamnegard CH, Polkey MI, Green M, Moxham J. Bilateral magnetic stimulation of the phrenic nerves from an anterolateral approach. Am J Respir Crit Care Med. 1996;154:1099–1105.
    1. Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–1335. doi: 10.1056/NEJMoa070447.
    1. Dhand UK. Clinical approach to the weak patient in the intensive care unit. Respir Care. 2006;51:1024–1040.
    1. Black LF, Hyatt RE. Maximal respiratory pressures: normal values and relationship to age and sex. Am Rev Respir Dis. 1969;99:696–702.
    1. Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med. 1991;324:1445–1450. doi: 10.1056/NEJM199105233242101.
    1. Martin AD, Davenport PD, Franceschi AC, Harman E. Use of inspiratory muscle strength training to facilitate ventilator weaning: a series of 10 consecutive patients. Chest. 2002;122:192–196. doi: 10.1378/chest.122.1.192.
    1. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, Spears L, Miller M, Franczyk M, Deprizio D, Schmidt GA, Bowman A, Barr R, McCallister KE, Hall JB, Kress JP. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373:1874–1882. doi: 10.1016/S0140-6736(09)60658-9.
    1. Travaline JM, Sudarshan S, Roy BG, Cordova F, Leyenson V, Criner J. Effect of N-Acetylcysteine on human diaphragm strength and fatigability. Am J Resp Crit Care Med. 1997;156:1567–1571.
    1. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson WR, Hebert PC, Heritier S, Heyland DK, McArthur C, McDonald E, Mitchell I, Myburgh JA, Norton R, Potter J, Robinson BG, Ronco JJ. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–1297. doi: 10.1056/NEJMoa0810625.
    1. Takala J, Ruokonen E, Webster NR, Nielsen MS, Zandstra DF, Vundelinckx G, Hinds CJ. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med. 1999;341:785–792. doi: 10.1056/NEJM199909093411102.
    1. Taylor BE, Buchman TG. Is there a role for growth hormone therapy in refractory critical illness? Curr Opin Crit Care. 2008;14:438–444. doi: 10.1097/MCC.0b013e328306a965.
    1. Huang CJ, Lin HC. Association between adrenal insufficiency and ventilator weaning. Am J Respir Crit Care Med. 2006;173:276–280. doi: 10.1164/rccm.200504-545OC.
    1. Ambrosino N, Pacini F, Paggiaro PL, Martino E, Contini V, Turini L, Tarchi M, Vitti P, Bramanti M, Pinchera A. Impaired ventilatory drive in short-term primary hypothyroidism and its reversal by L-triiodothyronine. J Endocrinol Invest. 1985;8:533–536.
    1. Martinez FJ, Bermudez-Gomez M, Celli BR. Hypothyroidism. A reversible cause of diaphragmatic dysfunction. Chest. 1989;96:1059–1063. doi: 10.1378/chest.96.5.1059.
    1. Datta D, Scalise P. Hypothyroidism and failure to wean in patients receiving prolonged mechanical ventilation at a regional weaning center. Chest. 2004;126:1307–1312. doi: 10.1378/chest.126.4.1307.
    1. Faisy C, Rabbat A, Kouchakji B, Laaban JP. Bioelectrical impedance analysis in estimating nutritional status and outcome of patients with chronic obstructive pulmonary disease and acute respiratory failure. Intensive Care Med. 2000;26:518–525. doi: 10.1007/s001340051198.
    1. Mechanick JI, Brett EM. Nutrition and the chronically critically ill patient. Curr Opin Clin Nutr Metab Care. 2005;8:33–39. doi: 10.1097/00075197-200501000-00006.

Source: PubMed

3
Iratkozz fel