Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort

Yeojun Yun, Han-Na Kim, Song E Kim, Seong Gu Heo, Yoosoo Chang, Seungho Ryu, Hocheol Shin, Hyung-Lae Kim, Yeojun Yun, Han-Na Kim, Song E Kim, Seong Gu Heo, Yoosoo Chang, Seungho Ryu, Hocheol Shin, Hyung-Lae Kim

Abstract

Background: Gut microbiota plays an important role in the harvesting, storage, and expenditure of energy obtained from one's diet. Our cross-sectional study aimed to identify differences in gut microbiota according to body mass index (BMI) in a Korean population. 16S rRNA gene sequence data from 1463 subjects were categorized by BMI into normal, overweight, and obese groups. Fecal microbiotas were compared to determine differences in diversity and functional inference analysis related with BMI. The correlation between genus-level microbiota and BMI was tested using zero-inflated Gaussian mixture models, with or without covariate adjustment of nutrient intake.

Results: We confirmed differences between 16Sr RNA gene sequencing data of each BMI group, with decreasing diversity in the obese compared with the normal group. According to analysis of inferred metagenomic functional content using PICRUSt algorithm, a highly significant discrepancy in metabolism and immune functions (P < 0.0001) was predicted in the obese group. Differential taxonomic components in each BMI group were greatly affected by nutrient adjustment, whereas signature bacteria were not influenced by nutrients in the obese compared with the overweight group.

Conclusions: We found highly significant statistical differences between normal, overweight and obese groups using a large sample size with or without diet confounding factors. Our informative dataset sheds light on the epidemiological study on population microbiome.

Keywords: Body mass index (BMI); Gut microbiota; Obesity.

Figures

Fig. 1
Fig. 1
Flow chart of study subjects
Fig. 2
Fig. 2
Comparison of (a) phylogenetic diversity (PD) across BMI categories, and (b) weighted UniFrac distant metrics of each BMI category (**P < 0.01, ***P < 0.001)
Fig. 3
Fig. 3
Comparison of PICRUSt predicted KEGG function data based on BMI categories. a An extended error bar plot for the comparison of normal vs obese groups. Only functions with P < 0.05 are shown. bdBox plots for multiple group analysis of normal/overweight/obese groups. b ‘Metabolism of Cofactors and Vitamins’ (P value, 5.04 × 10−13), c ‘Energy Metabolism’ (2.15 × 10−5), d ‘Lipid Metabolism’ (2.86 × 10−7). P value was calculated by Bonferroni multiple test correction methods

References

    1. WHO Obesity and Overweight. Fact sheet No 311. 2015. .
    1. Bouchard C. The biological predisposition to obesity: beyond the thrifty genotype scenario. Int J Obes. 2007;31(9):1337–1339. doi: 10.1038/sj.ijo.0803610.
    1. Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation. 2012;126(1):126–132. doi: 10.1161/CIRCULATIONAHA.111.087213.
    1. Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014;588(22):4223–4233. doi: 10.1016/j.febslet.2014.09.039.
    1. Sanmiguel C, Gupta A, Mayer EA. Gut Microbiome and obesity: a plausible explanation for obesity. Curr Obes Rep. 2015;4(2):250–261. doi: 10.1007/s13679-015-0152-0.
    1. Tilg H, Moschen AR, Kaser A. Obesity and the Microbiota. Gastroenterology. 2009;136(5):1476–1483. doi: 10.1053/j.gastro.2009.03.030.
    1. Million M, Lagier JC, Yahav D, Paul M. Gut bacterial microbiota and obesity. Clin Micro Infect. 2013;19(4):305–313. doi: 10.1111/1469-0691.12172.
    1. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–2340. doi: 10.1194/jlr.R036012.
    1. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nat. 2006;444(7122):1027–1131. doi: 10.1038/nature05414.
    1. Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obes. 2010;18(1):190–5. doi: 10.1038/oby.2009.167.
    1. Gibson GR, Macfarlane GT, Cummings JH. Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut. 1993;34(4):437–439. doi: 10.1136/gut.34.4.437.
    1. Greiner T, Bäckhed F. Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab. 2011;22(4):117–123. doi: 10.1016/j.tem.2011.01.002.
    1. Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2015;26(9):493–501. doi: 10.1016/j.tem.2015.07.002.
    1. Cani PD, Geurts L, Matamoros S, Plovier H, Duparc T. Glucose metabolism: focus on gut microbiota, the endocannabinoid system and beyond. Diabetes & Metab. 2014;40(4):246–257. doi: 10.1016/j.diabet.2014.02.004.
    1. Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes & Endocrinol. 2015;3(3):207–215. doi: 10.1016/S2213-8587(14)70134-2.
    1. Everard A, Cani PD. Gut microbiota and GLP-1. Reviews in Endocr and Metab Disord. 2014;15(3):189–196. doi: 10.1007/s11154-014-9288-6.
    1. Graham C, Mullen A, Whelan K. Obesity and the gastrointestinal microbiota: a review of associations and mechanisms. Nutr Rev. 2015;73(6):376–385. doi: 10.1093/nutrit/nuv004.
    1. Xu Z, Knight R: Dietary effects on human gut microbiome diversity. British Journal of Nutrition 2015, 113(SupplementS1):S1-S5.
    1. Foxman B, Martin ET. Use of the Microbiome in the practice of epidemiology: a primer on -Omic technologies. Am J Epidemiol. 2015;
    1. Kim C-W, Yun KE, Jung H-S, Chang Y, Choi E-S, Kwon M-J, et al. Sleep duration and quality in relation to non-alcoholic fatty liver disease in middle-aged workers and their spouses. J Hepatol. 2013;59(2):351–7.
    1. Chang Y, Jung H-S, Cho J, Zhang Y, Yun KE, Lazo M, et al. Metabolically healthy obesity and the development of nonalcoholic fatty liver disease. Am J Gastroenterol. 2016;
    1. WHO ec: Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. The Lancet 2004, 363(9403):157–163.
    1. Ahn Y, Kwon E, Shim JE, Park MK, Joo Y, Kimm K, et al. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur J Clin Nutr. 2007;61(12):1435–41.
    1. Choi Y, Chang Y, Ryu S, Cho J, Rampal S, Zhang Y, et al. Coffee consumption and coronary artery calcium in young and middle-aged asymptomatic adults. Heart. 2015;101(9):686–91.
    1. Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr. 1997;65(4):1220S–1228S.
    1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4516–22.
    1. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10(1):57–9.
    1. Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10(12):1200–1202. doi: 10.1038/nmeth.2658.
    1. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21.
    1. Parks DH, Beiko RG. Identifying biologically relevant differences between metagenomic communities. Bioinform. 2010;26(6):715–721. doi: 10.1093/bioinformatics/btq041.
    1. Brahe LK, Le Chatelier E, Prifti E, Pons N, Kennedy S, Hansen T, et al. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutr Diab. 2015;5:e159.
    1. Belzer C, de Vos WM. Microbes inside-from diversity to function: the case of Akkermansia. ISME J. 2012;6(8):1449–1458. doi: 10.1038/ismej.2012.6.
    1. Goodrich Julia K, Waters Jillian L, Poole Angela C, Sutter Jessica L, Koren O, Blekhman R, et al. Human genetics shape the gut Microbiome. Cell. 2014;159(4):789–99.
    1. Angelakis E, Merhej V, Raoult D. Related actions of probiotics and antibiotics on gut microbiota and weight modification. Lancet Infect Dis. 2013;13(10):889–899. doi: 10.1016/S1473-3099(13)70179-8.
    1. Walter P, Paetkau V, Lardy HA. Paths of carbon in gluconeogenesis and Lipogenesis: III. the role and regulation of mitochondrial processes involved in supplying precursors of phosphoenolpyruvate. J Biol Chem. 1966;241(11):2523–2532.
    1. Hird FJR, Weidemann MJ. Oxidative phosphorylation accompanying oxidation of short-chain fatty acids by rat-liver mitochondria. Biochem J. 1966;98(2):378. doi: 10.1042/bj0980378.
    1. Wong JM, de Souza R, Kendall C, Emam A, Jenkins DJA. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40(3):235–243. doi: 10.1097/00004836-200603000-00015.
    1. Rios-Covian D, Ruas-Madiedo P, Margolles A, Gueimonde M, De Los Reyes-Gavilan CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016;7
    1. Chevalier C, Stojanović O, Colin Didier J, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, et al. Gut Microbiota orchestrates energy homeostasis during cold. Cell. 2015;163(6):1360–74.
    1. Louis S, Tappu R-M, Damms-Machado A, Huson DH, Bischoff SC. Characterization of the gut microbial Community of Obese Patients Following a weight-loss intervention using whole Metagenome shotgun sequencing. PLoS One. 2016;11(2):e0149564. doi: 10.1371/journal.pone.0149564.
    1. Franz CMAP, Cho G-S, Ritzmann F, Eckstein M, Huch M, Briviba K, Behsnilian D, Neve H. Quantification of Slackia and Eggerthella spp. in human feces and adhesion of representatives strains to Caco-2 cells. Front Microbiol. 2016;7.
    1. Maruo T, Sakamoto M, Ito C, Toda T, Benno Y. Adlercreutzia equolifaciens gen. Nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol. 2008;58(5):1221–1227. doi: 10.1099/ijs.0.65404-0.
    1. Brooks JP, Edwards DJ, Harwich MD, Rivera MC, Fettweis JM, Serrano MG, et al. The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol. 2015;15(1):66.

Source: PubMed

3
Iratkozz fel