Lycium barbarum Reduces Abdominal Fat and Improves Lipid Profile and Antioxidant Status in Patients with Metabolic Syndrome

Mayara Zagonel de Souza Zanchet, Geisson Marcos Nardi, Letícia de Oliveira Souza Bratti, Fabíola Branco Filippin-Monteiro, Claudriana Locatelli, Mayara Zagonel de Souza Zanchet, Geisson Marcos Nardi, Letícia de Oliveira Souza Bratti, Fabíola Branco Filippin-Monteiro, Claudriana Locatelli

Abstract

Natural antioxidants present in fruits have attracted considerable interest due to their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals of goji berry (GB) in patients with metabolic syndrome have not been investigated. In this study, we examined anthropometric and biochemical parameters in patients with metabolic syndrome after the consumption of GB. The patients were divided into two groups, control (C) and supplemented (S), and followed up for 45 days. Participants were individually instructed to carry out a healthy diet, but additionally, an inclusion of 14 g of the natural form of goji berry in the diet during 45 days for the S group was proposed. After 45 days of study, a significant reduction in transaminases as well as an improvement in lipid profile in the S group was observed. Likewise, a significant reduction in the waist circumference of the S group was observed when compared with that of the C group, and increased glutathione and catalase levels associated with a reduction of lipid peroxidation. These results suggest that this is an effective dietary supplement for the prevention of cardiovascular diseases in individuals with metabolic syndrome.

Figures

Figure 1
Figure 1
Lipid profile of patients with MS in the control group (C) and supplemented group (S) at the beginning, at day 15, and at day 45 after intervention. Total cholesterol (TC, (a)), HDL cholesterol (b), LDL cholesterol (c), and VLDL cholesterol (d) in patients with metabolic syndrome. Biochemical parameters were evaluated before (baseline) and 15 (15C and 15S) and 45 days (45C and 45S) after supplementation. Closed bars (control group—not supplemented) and open bars were supplemented with 14 g of goji berry daily. Values of ∗∗p < 0.01 and ∗∗∗p < 0.001 were considered statistically significant when comparing the baseline time with the end time of intervention in each group, using ANOVA followed by the Bonferroni post hoc test.
Figure 2
Figure 2
Serum triglycerides and fasting glycemia in patients with MS in the control group (C) and supplemented group (S) at the beginning, at day 15, and at day 45 after intervention. Evaluation of triglycerides (TG, (a)) and glucose (b) in patients with metabolic syndrome. Biochemical parameters were evaluated before (baseline) and 15 (15C and 15S) and 45 days (45C and 45S) after supplementation. Closed bars (control group—not supplemented) and open bars were supplemented with 14 g of goji berry daily. Values of ∗∗∗p < 0.001 were considered statistically significant when comparing the baseline time with the end time of intervention in each group, using ANOVA followed by the Bonferroni post hoc test.
Figure 3
Figure 3
Hepatic enzyme patients with MS in the control group (C) and supplemented group (S) at the beginning, at day 15, and at day 45 after intervention. Evaluation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in patients with metabolic syndrome. AST (a) and ALT (b) were evaluated before (group baseline) and 15 (15C and 15S) and 45 days (45S) after supplementation with 14 g of goji berry daily. The control group (closed bars) supplemented with goji (open bars). Values of ∗∗∗p < 0.001 were considered statistically significant when comparing the baseline time with the end time of intervention in each group, using ANOVA followed by the Bonferroni post hoc test.
Figure 4
Figure 4
Oxidative stress variable patients with MS in the control group (C) and supplemented group (S) at the beginning and day 45 after intervention. Evaluation of thiobarbituric acid reactive substances (TBARS), blood reduced glutathione (GSH), total antioxidant control, catalase activity (CAT), and measurement of superoxide dismutase activity (SOD) in patients with metabolic syndrome. TBARS (a), GSH (b), total antioxidant control (c), and CzAT (d) were evaluated before (baseline) and 45 days after supplementation with 14 g of goji berry daily. Values of ∗∗p < 0.01 and ∗∗∗p < 0.001 were considered statistically significant when comparing the baseline time with the end time of intervention in each group, using ANOVA followed by the Bonferroni post hoc test.

References

    1. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) Jama. 2001;285(19):2486–2497. doi: 10.1001/jama.285.19.2486.
    1. Mottillo S., Filion K. B., Genest J., et al. The metabolic syndrome and cardiovascular risk: a systematic review and meta-analysis. Journal of the American College of Cardiology. 2010;56(14):1113–1132. doi: 10.1016/j.jacc.2010.05.034.
    1. Doo M., Kim Y. Obesity: interactions of genome and nutrients intake. Preventive Nutition and Food Science. 2015;20:1–7. doi: 10.3746/pnf.2015.20.1.1.
    1. Fearon I. M., Faux S. P. Oxidative stress and cardiovascular disease: novel tools give (free) radical insight. Journal of Molecular and Cellular Cardiology. 2009;47(3):372–381. doi: 10.1016/j.yjmcc.2009.05.013.
    1. Guo C. Y., Sun L., Chen X. P., Zhang D. S. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research. 2013;8(21):2003–2014. doi: 10.3969/j.issn.1673-5374.2013.21.009.
    1. Niedowicz D. M., Daleke D. L. The role of oxidative stress in diabetic complications. Cell Biochemistry and Biophysics. 2005;43(2):289–330. doi: 10.1385/CBB:43:2:289.
    1. Schieber M., Chandel N. S. ROS function in redox signaling and oxidative stress. Current Biology. 2014;24(10):R453–R462. doi: 10.1016/j.cub.2014.03.034.
    1. Lushchak V. I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions. 2014;224:164–175. doi: 10.1016/j.cbi.2014.10.016.
    1. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biology. 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002.
    1. Shanakia M., Hossein-nezhad A., Meshkani R., et al. Effects of resveratrol on crosstalk between canonical Β-catenin/Wnt and FOXO pathways in coronary artery disease patients with metabolic syndrome: a case control study. Iranian Journal of Pharmaceutical Research. 2016;15(3):547–559.
    1. Harford K., Reynolds C. M., McGillicuddy F. C., Roche H. M. Fats, inflammation and insulin resistance: insights to the role of macrophage and T-cell accumulation in adipose tissue. Proceedings of the Nuition Society. 2011;70(4):408–417. doi: 10.1017/S0029665111000565.
    1. Weisberg S. P., McCann D., Desai M., Rosenbaum M., Leibel R. L., Ferrante A. W., Jr Obesity is associated with macrophage accumulation in adipose tissue. Journal of Clinical Investigation. 2003;112(12):1796–1808. doi: 10.1172/JCI19246.
    1. Boeing H., Bechthold A., Bub A., et al. Critical review: vegetables and fruit in the prevention of chronic diseases. European Journal of Nutrition. 2012;51(6):637–663. doi: 10.1007/s00394-012-0380-y.
    1. Anantachoke N., Lomarat P., Praserttirachai W., Khammanit R., Mangmool S. Thai fruits exhibit antioxidant activity and induction of antioxidant enzymes in HEK-293 cells. Evidence-Based Complementary and Alternative Medicine. 2016;2016:14. doi: 10.1155/2016/6083136.6083136
    1. Furukawa S., Fujita T., Shimabukuro M., et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. Journal of Clinical Investigation. 2004;114(12):1752–1761. doi: 10.1172/JCI21625.
    1. Rangel-Huerta O. D., Aquilera C. M., Martin M. V., et al. Normal or high polyphenol concentration in orange juice affects antioxidant activity, blood pressure, and body weight in obese or overweight adults. Journal of Nutrition. 2015;145(8):1808–1816. doi: 10.3945/jn.115.213660.
    1. Seto S. W., Yang G. Y., Kiat H., Bensoussan A., Kwan Y. W., Chang D. Diabetes mellitus, cognitive impairment, and traditional Chinese medicine. International Journal of Endocrinology. 2015;2015:14. doi: 10.1155/2015/810439.810439
    1. Sousa G. T., Lira F. S., Rosa J. C., et al. Dietary whey protein lessens several risk factors for metabolic diseases: a review. Lipids in Health and Disease. 2012;11(67):1–9. doi: 10.1186/1476-511X-11-67.
    1. Bucheli P., Vidal K., Sheng L., et al. Goji berry effects on macular characteristics and plasma antioxidant levels. Optometry & Vision Science. 2011;88(2):257–262. doi: 10.1097/OPX.0b013e318205a18f.
    1. Cheng J., Zhou Z., Sheng H. P., et al. An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. Drug Design, Development and Therapy. 2015;9:33–78. doi: 10.2147/DDDT.S72892.
    1. Nardi G. M., Farias Januario A. G., Freire C. G., et al. Anti-inflammatory activity of berry fruits in mice model of inflammation is based on oxidative stress modulation. Pharmacognosy Research. 2016;8(Supplement 1):42–49. doi: 10.4103/0974-8490.178642.
    1. Mocan A., Zengin G., Simirgiotis M., et al. Functional constituents of wild and cultivated goji (L. barbarum L.) leaves: phytochemical characterization, biological profile, and computational studies. Journal of Enzyme Inhibition and Medicinal Chemistry. 2017;32(1):153–168. doi: 10.1080/14756366.2016.1243535.
    1. Yi R., Liu X. M., Dong Q. A study of Lycium barbarum polysaccharides (LBP) extraction technology and its anti-aging effect. African Journal of Traditional, Complementary, and Alternative Medicines. 2013;10(4):171–174.
    1. Li G., Sepkovic D. W., Bradlow H. L., Telang N. T., Wong G. Y. Lycium barbarum inhibits growth of estrogen receptor positive human breast cancer cells by favorably altering estradiol metabolismo. Nutrition and Cancer. 2009;61(3):408–414. doi: 10.1080/01635580802585952.
    1. Li W., Li Y., Wang Q., Yang Y. Crude extracts from Lycium barbarum suppress SREBP-1c expression and prevent diet-induced fatty liver through AMPK activation. BioMed Research International. 2014;2014:10. doi: 10.1155/2014/196198.196198
    1. Zhang X., Li Y., Cheng J., et al. Immune activities comparison of polysaccharide and polysaccharide-protein complex from Lycium barbarum L. International Journal of Biological Macromolecules. 2014;65:441–445. doi: 10.1016/j.ijbiomac.2014.01.020.
    1. Sposito A. C., Caramelli B., Fonseca F. A., et al. Department of Atherosclerosis. Brazilian Society of Cardiology. IV Brazilian guidelines on dyslipidemia and prevention of atherosclerosis. Arquivos Brasileiros de Cardiologia. 2007;88(Supplement 1):3–19.
    1. Bucheli P., Vidal K., Shen L., et al. Goji berry effects on macular characteristics and plasma antioxidant levels. Optometry and Vision Science. 2011;88(2):257–262. doi: 10.1097/OPX.0b013e318205a18f.
    1. World Health Organization, N. The Global Burden of Disease: 2004 Update. Update 2010. 2008;2010:1–146.
    1. Jone P. R. M., Hunt M. J., Brown T. P., Norgan N. G. Waist-hip circumference ratio and its relation to age and overweight in British men. Human Nutrition: Clinical Nutrition. 1986;40(3):39–47.
    1. Han T. S., Leer E. M. V., Seidell J. C., Lean M. E. Waist circumference action levels in the identification of cardiovascular risk factors: prevalence study in a random sample. BMJ Journals. 1995;311(7017):1401–1405. doi: 10.1136/bmj.311.7017.1401.
    1. Lipschitz D. A. Screening for nutritional status in the elderly. Primary Care: Clinics in Office Practice. 1994;21(1):p. 55.
    1. Friedewald W. T., Levi R. I., Fredrickson D. S. Estimation of the concentration of low density lipoproteins cholesterol in plasma without use of the ultracentrifuge. Clinical Chemistry. 1972;18(6):499–502.
    1. Hirano T., Ito Y., Saegusa H., Yoshino G. A novel and simple method for quantification of small, dense LDL. Journal of Lipid Research. 2003;44(11):2191–2201. doi: 10.1194/jlr.D300007-JLR200.
    1. Benzie I. F. F., Strain J. J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry. 1996;239(1):70–76. doi: 10.1006/abio.1996.0292.
    1. Beutler E., Kelly B. M., Duron O. Improved method for determination of blood glutathione. The Journal of Laboratory and Clinical Medicine. 1963;61:882–888.
    1. Esterbauer H., Cheeseman K. H. Determination of aldehydic lipid peroxidation: malonaldehyde and 4-hydroxynonenal. Methods in Enzymology. 1990;186:407–421.
    1. Aebi H. Catalase in vitro. Methods in Enzymology. 1984;105:121–126.
    1. Bradford M. M. A. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976;72(1–2):248–254. doi: 10.1016/0003-2697(76)90527-3.
    1. Souza J. R. M., Oliveira R. T., Blotta M. H. S. L., Rizzi Coelho O. Níveis séricos de interleucina-6 (IL-6), interleucina-18 (IL-18) e proteína C reativa (PCR) na síndrome coronariana aguda sem supradesnivelamento do ST em pacientes com diabete tipo 2. Arquivos Brasileiros de Cardiologia. 2008;90(2) doi: 10.1590/S0066-782X2008000200004.
    1. Nichols M., Townsend N., Scarborough P., Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. European Heart Journal. 2014;34(42):2950–2959. doi: 10.1093/eurheartj/ehu378.
    1. Bopp M., Barbiero S. Prevalência de síndrome metabólica em pacientes de um ambulatório do Instituto de Cardiologia do Rio Grande do Sul (RS) Arquivos Brasileiros de Cardiologia. 2008;93(5):439–477.
    1. Pego-Fernandes P. M., Nascimbem M. B., Ranzani O. T. Análise dos critérios de definição da síndrome metabólica em pacientes com diabetes melito tipo 2. Jornal Brasileiro de Pneumologia. 2007;37:28–35.
    1. Salaroli L. B., Barbosa G. C., Mill J. G., Molina M. C. Prevalência de Síndrome Metabólica em Estudo de Base Populacional, Vitória, ES – Brasil. Arquivos Brasileiros de Endocrinologia & Metabologia. 2007;51(7):1143–1152. doi: 10.1590/S0004-27302007000700018.
    1. Kim S. H., Chung J. H., Song S. W., Jung W. S., Lee Y. A., Kim H. N. Relationship between deep subcutaneous abdominal adipose tissue and metabolic syndrome: a case control study. Diabetology & Metabolic Syndrome. 2016;8(1):1–9. doi: 10.1186/s13098-016-0127-7.
    1. Lu T. M., Chiu H. F., Shen Y. C., Chung C. C., Venkatakrishnan K., Wang C. K. Hypocholesterolemic efficacy of quercetin rich onion juice in healthy mild hypercholesterolemic adults: a pilot study. Plant Foods for Human Nutrition. 2015;70(4):395–400. doi: 10.1007/s11130-015-0507-4.
    1. Simão A. N. C., Godeny P., Lozovoy M. A. B., Dichi J. B., Dichi I. Efeito dos ácidos graxos n–3 no perfil glicêmico e lipídico, no estresse oxidativo e na capacidade antioxidante total de pacientes com síndrome metabólica. Arquivos Brasileiros de Endocrinoloia & Metabologia. 2010;54(5):463–469. doi: 10.1590/S0004-27302010000500006.
    1. Cheng D., Kong H. The effect of Lycium barbarum polysaccharide on alcohol-induced oxidative stress in rats. Molecules. 2011;16(3):2542–2550. doi: 10.3390/molecules16032542.
    1. Gündüz E., Dursun R., Zengin Y., et al. Lycium barbarum extract provides effective protection against paracetamol-induced acute hepatotoxicity in rats. International Journal of Clininal and Experimental Medicine. 2015;8(5):7898–7905.
    1. Lubrano C. Integrated haematological profiles of redox status, lipid, and inflammatory protein biomarkers in benign obesity and unhealthy obesity with metabolic syndrome. Oxidative Medicine Cellular Longevity. 2015;2015:14. doi: 10.1155/2015/490613.490613
    1. Khassaf M., McArdle A., Esanu C., et al. Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. The Jounal of Physiology. 2003;549(Part 2):645–652. doi: 10.1113/jphysiol.2003.040303.
    1. Garcia-Bailo B., El-Sohemy A., Haddad P. S., et al. Vitamins D, C, and E in the prevention of type 2 diabetes mellitus: modulation of inflammation and oxidative stress. Biologics. 2011;5(1):7–19. doi: 10.2147/BTT.S14417.
    1. Boaventura B. C. B., Di Pietro P. F., Stefanuto A., et al. Association of mate tea (Ilex paraguariensis) intake and dietary intervention and effects on oxidative stress biomarkers of dyslipidemic subjects. Nutrition. 2012;28(6):657–664. doi: 10.1016/j.nut.2011.10.017.
    1. Roberts C. K., Ng C., Hama S., Eliseo A. J., Barnard R. J. Effect of a short-term diet and exercise intervention on inflammatory/antiinflammatory properties of HDL in overweight/obese men with cardiovascular risk factors. Journal of Applied Physiology. 2006;101(6):1727–1732. doi: 10.1152/japplphysiol.00345.2006.
    1. Yeh C. T., Yen G. C. Induction of hepatic antioxidant enzymes by phenolic acids in rats is accompanied by increased levels of multidrug resistance-associated protein 3 mRNA expression. Journal of Nutrition. 2006;136(1):11–15.
    1. Lim C. Y., Mat Junit S., Abdulla M. A., Abdul Aziz A. In vivo biochemical and gene expression analyses of the antioxidant activities and hypocholesterolaemic properties of Tamarindus indica fruit pulp extract. PloS One. 2013;8(7, article e70058) doi: 10.1371/journal.pone.0070058.
    1. Pereira A. C. D. S., Dion’ısio A. P., Wurlitzer N. J., et al. Effect of antioxidant potential of tropical fruit juices on antioxidant enzyme profles and lipid peroxidation in rats. Food Chemistry. 2014;157:179–185. doi: 10.1016/j.foodchem.2014.01.090.
    1. Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacognosy Reviews. 2010;4(8):118–126. doi: 10.4103/0973-7847.70902.
    1. Kewcharoenwong C., Rinchai D., Utispan K., et al. Glibenclamide reduces pro-inflammatory cytokine production by neutrophils of diabetes patients in response to bacterial infection. Scientific Reports. 2013;3(3363):1–8. doi: 10.1038/srep03363.
    1. Andrews M., Soto N., Arredondo M. Efecto de metformina sobre la expresión del factor de necrosis tumoral-α, los receptores Toll-like 2/4 y la PCR ultra sensible en sujetos obesos con diabetes tipo 2. Rev med Chile. 2012;140(11):1377–1382. doi: 10.4067/S0034-98872012001100001.
    1. Wada H., Dohi T., Miyauchi K., et al. Preprocedural high-sensitivity C-reactive protein predicts long-term outcome of percutaneous coronary intervention. Circulation Journal. 2017;81(1):90–95. doi: 10.1253/circj.CJ-16-0790.

Source: PubMed

3
Iratkozz fel