Effect of phenylephrine vs. ephedrine on frontal lobe oxygenation during caesarean section with spinal anesthesia: an open label randomized controlled trial

Visti T Foss, Robin Christensen, Kim Z Rokamp, Peter Nissen, Niels H Secher, Henning B Nielsen, Visti T Foss, Robin Christensen, Kim Z Rokamp, Peter Nissen, Niels H Secher, Henning B Nielsen

Abstract

Background: During caesarean section spinal anesthesia may provoke maternal hypotension that we prevent by administration of phenylephrine and/or ephedrine. Phenylephrine is however reported to reduce the near infrared spectroscopy-determined frontal lobe oxygenation (ScO2) but whether that is the case for patients exposed to spinal anesthesia is not known.

Objectives: To evaluate the impact of phenylephrine vs. ephedrine on ScO2during caesarean section with spinal anesthesia in a single center, open-label parallel-group study with balanced randomization of 24 women (1:1). Secondary aims were to compare the effect of the two drugs on maternal hemodynamics and fetal heart rate.

Intervention: Ephedrine (0.8-3.3 mg/min) vs. phenylephrine infusion (0.02-0.07 mg/min).

Results: For the duration of surgery, administration of ephedrine maintained ScO2 (compared to baseline +2.1 ± 2.8%; mean ± SE, while phenylephrine reduced ScO2 (-8.6 ± 2.8%; p = 0.005) with a 10.7% difference in ScO2between groups (p = 0.0106). Also maternal heart rate was maintained with ephedrine (+3 ± 3 bpm) but decreased with phenylephrine (-11 ± 3 bpm); difference 14 bpm (p = 0.0053), but no significant difference in mean arterial pressure (p = 0.1904) or CO (p = 0.0683) was observed between groups. The two drugs also elicited an equal increase in fetal heart rate (by 19 ± 3 vs. 18 ± 3 bpm; p = 0.744).

Conclusion: In the choice between phenylephrine and ephedrine for maintenance of blood pressure during caesarean section with spinal anesthesia, ephedrine maintains frontal lobe oxygenation and maternal heart rate with a similar increase in fetal heart rate as elicited by phenylephrine.

Trial registration: Clinical trials NCT 01509521 and EudraCT 2001 006103 35.

Trial registration: ClinicalTrials.gov NCT01509521.

Keywords: cerebral autoregulation; drug effect; fetal; heart rate; near infrared spectroscopy; vasoconstrictor agents.

Figures

Figure 1
Figure 1
Trial profile.
Figure 2
Figure 2
Change in ScO2 from baseline. Changes in frontal lobe oxygenation (ScO2; % from baseline) during caesarean section with spinal anesthesia. Patients received either phenylephrine (n = 12; open circles) or ephedrine (n = 12; black circles).
Figure 3
Figure 3
Change in mean arterial pressure from baseline. Changes in mean arterial blood pressure (MAP) from baseline (mmHg) during caesarean section with spinal anesthesia. Patients received either phenylephrine (n = 12; open circles) or ephedrine (n = 12; black circles).
Figure 4
Figure 4
Foetal heart rate. Change in fetal heart rate (bpm) after induction (2.5–5 min), before surgery (7.5–17.5 min), after delivery (12.5–27.5 min) in two groups of 12 patients undergoing spinal anesthesia for caesarean section and receiving either phenylephrine (open circles) or ephedrine (black circles).

References

    1. Berlac P. A., Rasmussen Y. H. (2005). Per-operative cerebral near-infrared spectroscopy (NIRS) predicts maternal hypotension during elective caesarean delivery in spinal anaesthesia. Int. J. Obstet. Anesth. 14, 26–31 10.1016/j.ijoa.2004.06.003
    1. Bogert L. W., van Lieshout J. J. (2005). Non-invasive pulsatile arterial pressure and stroke volume changes from the human finger. Exp. Physiol. 90, 437–446 10.1113/expphysiol.2005.030262
    1. Cannesson M., Zhongping J., Chen G., Vu T. Q., Hatib F. (2012). Effects of phenylephrine on cardiac output and venous return depend on the position of the heart on the Frank-Starling relationship. J. Appl. Physiol. 113, 281–289 10.1152/japplphysiol.00126.2012
    1. Choi J., Wolf M., Toronov V., Wolf U., Polzonetti C., Hueber D., et al. (2004). Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach. J. Biomed. Opt. 9, 221–229 10.1117/1.1628242
    1. Cyna A. M., Andrew M., Emmett R. S., Middleton P., Simmons S. W. (2006). Techniques for preventing hypotension during spinal anaesthesia for caesarean section. Cochrane Database Syst. Rev. 4:CD002251 10.1002/14651858.CD002251.pub2
    1. Das S., Mukhopadhyay S., Mandal M., Mandal S., Basu S. R. (2011). A comparative study of infusions of phenylephrine, ephedrine and phenylephrine plus ephedrine on maternal haemodynamics in elective caesarean section. Indian J. Anaesth. 55, 578–583 10.4103/0019-5049.90612
    1. Davie S. N., Grocott H. P. (2012). Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology 116, 834–840 10.1097/ALN.0b013e31824c00d7
    1. Doherty A., Ohashi Y., Downey K., Carvalho J. C. (2012). Phenylephrine infusion versus bolus regimens during cesarean delivery under spinal anesthesia: a double-blind randomized clinical trial to assess hemodynamic changes. Anesth. Analg. 115, 1343–1350 10.1213/ANE.0b013e31826ac3db
    1. Dyer R. A., Reed A. R., van Dyk D., Arcache M. J., Hodges O., Lombard C. J., et al. (2009). Hemodynamic effects of ephedrine, phenylephrine, and the coadministration of phenylephrine with oxytocin during spinal anesthesia for elective cesarean delivery. Anesthesiology 111, 753–765 10.1097/ALN.0b013e3181b437e0
    1. Harms M. P., Wesseling K. H., Pott F., Jenstrup M., Van Goudoever J., Secher N. H., et al. (1999). Continuous stroke volume monitoring by modelling flow from non-invasive measurement of arterial pressure in humans under orthostatic stress. Clin. Sci. 97, 291–301 10.1042/CS19990061
    1. Hunt K., Tachtsidis I., Bleasdale-Barr K., Elwell C., Mathias C., Smith M. (2006). Changes in cerebral oxygenation and haemodynamics during postural blood pressure changes in patients with autonomic failure. Physiol. Meas. 27, 777–785 10.1088/0967-3334/27/9/002
    1. Ide K., Horn A., Secher N. H. (1999). Cerebral metabolic response to submaximal exercise. J. Appl. Physiol. 87, 1604–1608
    1. Jansen J. R., Schreuder J. J., Mulier J. P., Smith N. T., Settels J. J., Wesseling K. H. (2001). A comparison of cardiac output derived from the arterial pressure wave against thermodilution in cardiac surgery patients. Br J Anaesth. 87, 212–222 10.1093/bja/87.2.212
    1. Jellema W. T., Wesseling K. H., Groeneveld A. B., Stoutenbeek C. P., Thijs L. G., van Lieshout J. J. (1999). Continuous cardiac output in septic shock by simulating a model of the aortic input impedance: a comparison with bolus injection thermodilution. Anesthesiology 90, 1317–1328 10.1097/00000542-199905000-00016
    1. Kim M. B., Ward D. S., Cartwright C. R., Kolano J., Chlebowski S., Henson L. C. (2000). Estimation of jugular venous O2 saturation from cerebral oximetry or arterial O2 saturation during isocapnic hypoxia. J. Clin. Monit. Comput. 16, 191–199 10.1023/A:1009940031063
    1. Kurihara K., Kikukawa A., Kobayashi A., Nakadate T. (2007). Frontal cortical oxygenation changes during gravity-induced loss of consciousness in humans: a near-infrared spatially resolved spectroscopic study. J. Appl. Physiol. 103, 1326–1331 10.1152/japplphysiol.01191.2006
    1. Langesaeter E., Rosseland L. A., Stubhaug A. (2008). Continuous invasive blood pressure and cardiac output monitoring during cesarean delivery: a randomized, double-blind comparison of low-dose versus high-dose spinal anesthesia with intravenous phenylephrine or placebo infusion. Anesthesiology 109, 856–863 10.1097/ALN.0b013e31818a401f
    1. LaPorta R. F., Arthur G. R., Datta S. (1995). Phenylephrine in treating maternal hypotension due to spinal anaesthesia for caesarean delivery: effects on neonatal catecholamine concentrations, acid base status and Apgar scores. Acta Anaesthesiol. Scand. 39, 901–915 10.1111/j.1399-6576.1995.tb04195.x
    1. Littell R. C., Pendergast J., Natarajan R. (2000). Modelling covariance structure in the analysis of repeated measures data. Stat. Med. 19, 1793–1819 10.1002/1097-0258(20000715)19:13<1793::AID-SIM482>;2-H
    1. Lucas S. J., Tzeng Y. C., Galvin S. D., Thomas K. N., Ogoh S., Ainslie P. N. (2010). Influence of changes in blood pressure on cerebral perfusion and oxygenation. Hypertension 55, 698–705 10.1161/HYPERTENSIONAHA.109.146290
    1. Madsen P., Olsen S. B., Nielsen H. B., Burcev I., Secher N. H. (1998). Near-infrared spectrophotometry determined brain oxygenation during fainting. Acta Physiol. Scand. 162, 501–517 10.1046/j.1365-201X.1998.0308f.x
    1. McGrath J. M., Chestnut D. H., Vincent R. D., DeBruyn C. S., Atkins B. L., Poduska D. J. (1994). Ephedrine remains the vasopressor of choice for treatment of hypotension during ritodrine infusion and epidural anesthesia. Anesthesiology 80, 1073–1081 10.1097/00000542-199405000-00016
    1. Meng L., Cannesson M., Alexander B. S., Yu Z., Kain Z. N., Cerussi A. E., et al. (2011a). Effects of phenylephrine and ephedrine bolus treatment on cerebral oxygenation in anaesthetized patients. Br. J. Anaesth. 107, 209–217 10.1093/bja/aer150
    1. Meng L., Gelb A. W., McDonagh D. L. (2013). Changes in cerebral tissue oxygen saturation during anaesthetic-induced hypotension: an interpretation based on neurovascular coupling and cerebral autoregulation. Anaesthesia 68, 736–441 10.1111/anae.12254
    1. Meng L., Tran N. P., Alexander B. S., Laning K., Chen G., Kain Z. N., et al. (2011b). The impact of phenylephrine, ephedrine, and increased preload on third-generation Vigileo-FloTrac and esophageal doppler cardiac output measurements. Anesth. Analg. 113, 751–757 10.1213/ANE.0b013e31822649fb
    1. Mercier F. J., Riley E. T., Frederickson W. L., Roger-Christoph S., Benhamou D., Cohen S. E. (2001). Phenylephrine added to prophylactic ephedrine infusion during spinal anesthesia for elective cesarean section. Anesthesiology 95, 668–674 10.1097/00000542-200109000-00020
    1. Ngan Kee W. D., Khaw K. S., Lau T. K., Ng F. F., Chui K., Ng K. L. (2008a). Randomised double-blinded comparison of phenylephrine vs ephedrine for maintaining blood pressure during spinal anaesthesia for non-elective caesarean section. Anaesthesia 63, 1319–1326 10.1111/j.1365-2044.2008.05635.x
    1. Ngan Kee W. D., Lee A., Khaw K. S., Ng F. F., Karmakar M. K., Gin T. (2008b). A randomized double-blinded comparison of phenylephrine and ephedrine infusion combinations to maintain blood pressure during spinal anesthesia for cesarean delivery: the effects on fetal acid-base status and hemodynamic control. Anesth. Analg. 107, 1295–1302 10.1213/ane.0b013e31818065bc
    1. Nissen P., Brassard P., Jørgensen T. B., Secher N. H. (2010). Phenylephrine but not ephedrine reduces frontal lobe oxygenation following anesthesia-induced hypotension. Neurocrit. Care 12, 17–23 10.1007/s12028-009-9313-x
    1. Nissen P., Nielsen H. B., van Lieshout J. J., Secher N. H. (2009a). Frontal lobe oxygenation is maintained during hypotension following propofol-phentanyl anesthesia. AANAJ. 77, 271–276
    1. Nissen P., Pacino H., Frederiksen H. J., Novovic S., Secher N. H. (2009b). Near-infrared spectroscopy for evaluation of cerebral autoregulation during orthotropic liver transplantation. Neurocrit. Care 11, 235–241 10.1007/s12028-009-9226-8
    1. Nissen P., Van Lieshout J. J., Novovic S., Bundgaard-Nielsen M., Secher N. H. (2009c). Techniques of cardiac output measurement during liver transplantation: arterial pulse wave versus thermodilution. Liver Transplant. 15, 287–291 10.1002/lt.21689
    1. Ogoh S., Sato K., Fisher J. P., Seifert T., Overgaard M., Secher N. H. (2011). The effect of phenylephrine on arterial and venous cerebral blood flow in healthy subjects. Clin. Physiol. Funct. Imaging 31, 445–451 10.1111/j.1475-097X.2011.01040.x
    1. Paulson O. B., Strandgaard S., Edvinsson L. (1990). Cerebral autoregulation. Cerebrovasc. Brain Metab. Rev. 2, 161–192
    1. Remmen J. J., Aengevaeren W. R., Verheugt F. W., van ver Werf T., Luijten H. E., Bos A., et al. (2002). Finapres arterial pulse wave analysis with model flow is not a reliable non-invasive method for assessment of cardiac output. Clin. Sci. 103, 143–149 10.1042/CS20010357
    1. Saravanan S., Kocarev M., Wilson R. C., Watkins E., Columb M. O., Lyons G. (2006). Equivalent dose of ephedrine and phenylephrine in the prevention of post-spinal hypotension in Caesarean section. Br. J. Anaesth. 96, 95–99 10.1093/bja/aei265
    1. Schulz K. F., Altman D. G., Moher D. (2010). for the CONSORT Group. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. J. Clin. Epi. 63, 834–840 10.1016/j.jclinepi.2010.02.005
    1. Steiner L. A., Pfister D., Strebel S. P., Radolovich D., Smielewski P., Czosnyka M. (2009). Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit. Care 10, 122–128 10.1007/s12028-008-9140-5
    1. Suzuki K., Asahina M., Suzuki A., Hattori T. (2008). Cerebral oxygenation monitoring for detecting critical cerebral hypoperfusion in patients with multiple system atrophy during the head-up tilt test. Intern. Med. 47, 1681–1687 10.2169/internalmedicine.47.1094
    1. Tan C. O. (2012). Defining the characteristic relationship between arterial pressure and cerebral flow. J. Appl. Physiol. 15, 1194–1200 10.1152/japplphysiol.00783.2012
    1. van Lieshout J. J., Pott F., Madsen P. L., van Goudoever J., Secher N. H. (2001). Muscle tensing during standing: effects on cerebral tissue oxygenation and cerebral artery blood velocity. Stroke 32, 1546–1551 10.1161/01.STR.32.7.1546
    1. Vesser M., Hofmann T., Roth R., Klöhr S., Rossaint R., Hessen M. (2012). Vasopressors for management of hypotension after spinal anesthesia for elective caesarean section. Systematic review and cumulative meta-analysis. Acta Anaesthesiol. Scand. 56, 810–816 10.1111/j.1399-6576.2011.02646.x
    1. Wang M., Han C. B., Qian Y. N. (2011). Comparison of effects in puerpera and fetus with ephedrine and phenylephrine during a cesarean delivery. J. Chin. Med. Assoc. 91, 2195–2198
    1. Yoshitani K., Kawaguchi M., Miura N., Okuno T., Kanoda T., Ohnishi Y., et al. (2007). Effects of hemoglobin concentration, skull thickness, and the area of the cerebrospinal fluid layer on near-infrared spectroscopy measurements. Anesthesiology 106, 458–462 10.1097/00000542-200703000-00009

Source: PubMed

3
Iratkozz fel