Multiparametric MRI - local staging of prostate cancer and beyond

Iztok Caglic, Viljem Kovac, Tristan Barrett, Iztok Caglic, Viljem Kovac, Tristan Barrett

Abstract

Background Accurate local staging is critical for treatment planning and prognosis in patients with prostate cancer (PCa). The primary aim is to differentiate between organ-confined and locally advanced disease with the latter carrying a worse clinical prognosis. Multiparametric MRI (mpMRI) is the imaging modality of choice for the local staging of PCa and has an incremental value in assessing pelvic nodal disease and bone involvement. It has shown superior performance compared to traditional staging based on clinical nomograms, and provides additional information on the site and extent of disease. MRI has a high specificity for diagnosing extracapsular extension (ECE), seminal vesicle invasion (SVI) and lymph node (LN) metastases, however, sensitivity remains poor. As a result, extended pelvic LN dissection remains the gold standard for assessing pelvic nodal involvement, and there has been recent progress in developing advanced imaging techniques for more distal staging. Conclusions T2W-weighted imaging is the cornerstone for local staging of PCa. Imaging at 3T and incorporating both diffusion weighted and dynamic contrast enhanced imaging can further increase accuracy. "Next generation" imaging including whole body MRI and PET-MRI imaging using prostate specific membrane antigen (68Ga-PSMA), has shown promising for assessment of LN and bone involvement as compared to the traditional work-up using bone scintigraphy and body CT.

Keywords: multiparametric MRI; prostate cancer; staging.

Figures

Figure 1
Figure 1
65-yr-old man with PSA 19.5 ng/ml. Invasion of the periprostatic fat and neurovascular bundle (NVB) infiltration at the left midgland consistent with T3a disease. Biopsy showed Gleason score (GS) 4 + 4 = 8. Radical retropubic prostatectomy (RRP) confirmed GS 4 + 4 = 8 and showed established T3a disease with a clear surgical margin (at least 1 mm).
Figure 2
Figure 2
77-yr-old man with PSA 38.2 ng/ml. (A) T2 weighted (T2W) imaging; (B) diffusion weighted (DW) imaging: (C) apparent diffusion coefficient (ADC) map. T3a at the right mid gland with bulging and asymmetrical thickening of the right neurovascular bundle (arrow). Gleason score (GS) = 9 with extracapsular extension and clear surgical margins was confirmed at radical prostatectomy.
Figure 3
Figure 3
74-yr-old man with PSA 35.2 ng/ml. (A) T2 weighted (T2W) imaging, (B) diffusion weighted (DW) imaging, (C) apparent diffusion coefficient (ADC) map. T3a at the right mid gland as suggested by a broad capsular contact at 19.4 mm. Biopsy showed Gleason score (GS) 4 + 4 = 8 disease. Patient underwent radiotherapy.
Figure 4
Figure 4
57-yr-old man with PSA 26 ng/ml. (A) Axial T2 weighted imaging (T2WI) shows mid gland right peripheral zones (PZ) lesion (arrow) with capsular contact but no tumour extension beyond it. (B) axial thin-sliced cube reformat suggests capsular breach and right neurovascular bundle involvement (arrow). Prostatectomy showed tumour in the right mid gland, Gleason score 4 + 5 = 9, with established extracapsular extension (ECE) (pT3a).
Figure 5
Figure 5
65-yr-old-man with PSA = 15.3 ng/ml and Gleason score 4 + 4 = 8 at biopsy. Axial (A) and coronal (C) T2 weighted imaging (T2WI) and diffusion weighted imaging (DWI) (B). T3b involving both seminal vesicles via ejaculatory ducts, shown in the coronal plane (arrow).
Figure 6
Figure 6
67-yr-old man with raising PSA = 12.7 ng/ml. (A) (coronal) and (B) (axial) T2 weighted (T2W) imaging shows index lesion in the left apex (*) and a low signal focus in the left seminal vesicle (arrow) with corresponding restricted diffusion on diffusion weighted imaging (DWI) ((C); arrow) and apparent diffusion coefficient (ADC) map ((D); arrow).
Figure 7
Figure 7
55-yr-old-man with PSA 32 ng/ml. (A) T2 weighted (T2W) imaging, (B) T1 weighted (T1W) imaging, (C) diffusion weighted (DW) imaging, (D) apparent diffusion coefficient (ADC) map. Low T2 signal in the right seminal vesicle is mimicking prostate cancer (D), however, there is no restricted diffusion. Biopsy of the right seminal vesicle showed amyloidosis which was confirmed at radical prostatectomy. Index tumour with Gleason score 4 + 3 = 7 was in the left peripheral zone.
Figure 8
Figure 8
77-yr-old man with PSA = 38.2 ng/ml. Enlarged nodes bilaterally consistent with metastatic involvement on T2 weighted imaging (T2WI) (A), more conspicuous on diffusion weighted imaging (DWI) (B).
Figure 9
Figure 9
61-yr-old man with PSA = 12.7 ng/ml. Bone metastasis (arrow) in the right sacrum shown as low signal on T1 weighted (T1W) imaging (A); more conspicuous as high signal on diffusion weighted imaging (DWI) (B).

References

    1. Mottet N, van den Bergh RCN, Briers E, Bourke L, Cornford P, De Santis M. EAU - ESTRO - ESUR - SIOG guidelines on prostate cancer 2018 In: European Association of Urology guidelines 2018 Edition Arnhem. The Netherlands: European Association of Urology Guidelines Office; 2018. et al.
    1. Brizmohun Appayya M, Adshead J, Ahmed HU, Allen C, Bainbridge A, Barrett T. National implementation of multi-parametric magnetic resonance imaging for prostate cancer detection - recommendations from a UK consensus meeting. BJU Int. 2018;122:13. doi: 10.1111/bju.14361. et al. –.
    1. Swanson GP, Riggs M, Hermans M. Pathologic findings at radical prostatectomy: risk factors for failure and death. Urol Oncol. 2007;25:110. doi: 10.1016/j.urolonc.2006.06.003. –.
    1. Godoy G, Tareen BU, Lepor H. Site of positive surgical margins influences biochemical recurrence after radical prostatectomy. BJU Int. 2009;104:1610. doi: 10.1111/j.1464-410X.2009.08688.x. –.
    1. Epstein JI, Partin AW, Potter SR, Walsh PC. Adenocarcinoma of the prostate invading the seminal vesicle: prognostic stratification based on pathologic parameters. Urology. 2000;56:283. doi: 10.1016/S0090-4295(00)00640-3. –.
    1. Cagiannos I, Karakiewicz P, Eastham JA, Ohori M, Rabbani F, Gerigk C. A preoperative nomogram identifying decreased risk of positive pelvic lymph nodes in patients with prostate cancer. J Urol. 2003;170:1798. doi: 10.1097/01.ju.0000091805.98960.13. et al. –.
    1. Gervasi LA, Mata J, Easley JD, Wilbanks JH, Seale-Hawkins C, Carlton CE. Prognostic significance of lymph nodal metastases in prostate cancer. J Urol. 1989;142:332. doi: 10.1016/S0022-5347(17)38748-7. et al. (2 Part 1) –.
    1. Eggener SE, Scardino PT, Walsh PC, Han M, Partin AW, Trock BJ. Predicting 15-year prostate cancer specific mortality after radical prostatectomy. J Urol. 2011;185:869. doi: 10.1016/j.juro.2010.10.057. et al. –.
    1. Morlacco A, Sharma V, Viers BR, Rangel LJ, Carlson RE, Froemming AT. The incremental role of magnetic resonance imaging for prostate cancer staging before radical prostatectomy. Eur Urol. 2017;71:701. doi: 10.1016/j.eururo.2016.08.015. et al. –.
    1. Ward JF, Slezak JM, Blute ML, Bergstralh EJ, Zincke H. Radical prostatectomy for clinically advanced (cT3) prostate cancer since the advent of prostate-specific antigen testing: 15-year outcome. BJU Int. 2005;95:751. doi: 10.1111/j.1464-410X.2005.05394.x. –.
    1. Augustin H, Fritz GA, Ehammer T, Auprich M, Pummer K. Accuracy of 3-Tesla magnetic resonance imaging for the staging of prostate cancer in comparison to the partin tables. Acta Radiol. 2009;50:562. doi: 10.1080/02841850902889846. –.
    1. Gupta RT, Faridi KF, Singh AA, Passoni NM, Garcia-Reyes K, Madden JF. Comparing 3-T multiparametric MRI and the Partin tables to predict organ-confined prostate cancer after radical prostatectomy. Urol Oncol Semin Orig Investig. 2014;32:1292. doi: 10.1016/j.urolonc.2014.04.017. et al. –.
    1. Rayn KN, Bloom JB, Gold SA, Hale GR, Baiocco JA, Mehralivand S. Added value of multiparametric magnetic resonance imaging to clinical nomograms for predicting adverse pathology in prostate cancer. J Urol. 2018;200:1041. doi: 10.1016/j.juro.2018.05.094. et al. –.
    1. Boehmer D, Maingon P, Poortmans P, Baron M-H, Miralbell R, Remouchamps V. Guidelines for primary radiotherapy of patients with prostate cancer. Radiother Oncol. 2006;79:259. doi: 10.1016/j.radonc.2006.05.012. et al. –.
    1. Mottet N, van der Poel HG, Rouvière O, Matveev VB, Schoots IG, Briers E. The benefits and harms of different extents of lymph node dissection during radical prostatectomy for prostate cancer: a systematic review. Eur Urol. 2017;72:84. doi: 10.1016/j.eururo.2016.12.003. et al. –.
    1. Buyyounouski MK, Choyke PL, McKenney JK, Sartor O, Sandler HM, Amin MB. Prostate cancer - major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67:245. doi: 10.3322/caac.21391. et al. –.
    1. Amin MB, Edge SB, Greene FL, Byrd DR, Brookland RK, Washington MK. AJCC cancer staging manual. 8th edition. New York: Springer; 2017. et al, editors.
    1. Giganti F, Moore CM, Punwani S, Allen C, Emberton M, Kirkham A. The natural history of prostate cancer on MRI: lessons from an active surveillance cohort. Prostate Cancer Prostatic Dis. 2018;21:556. doi: 10.1038/s41391-018-0058-5. –.
    1. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ. PI-RADS prostate imaging - reporting and data system: 2015, Version 2. Eur Urol. 2016;69:16. doi: 10.1016/j.eururo.2015.08.052. et al. –.
    1. Rouvière O, Hartman RP, Lyonnet D. Prostate MR imaging at high-field strength: evolution or revolution? . Eur Radiol. 2006;16:276. –.
    1. Turkbey B, Merino MJ, Gallardo EC, Shah V, Aras O, Bernardo M. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology. J Magn Reson Imaging. 2014;39:1443. doi: 10.1002/jmri.24317. et al. –.
    1. Czarniecki M, Caglic I, Grist JT, Gill AB, Lorenc K, Slough RA. Role of PROPELLER-DWI of the prostate in reducing distortion and artefact from total hip replacement metalwork. . Eur J Radiol. 2018;102:213. et al. –.
    1. Gill AB, Czarniecki M, Gallagher FA, Barrett T. A method for mapping and quantifying whole organ diffusion-weighted image distortion in MR imaging of the prostate. Sci Rep. 2017;7:12727. doi: 10.1038/s41598-017-13097-6.
    1. Barrett T, Turkbey B, Choyke PL. PI-RADS version 2: what you need to know. Clin Radiol. 2015;70:1165. doi: 10.1016/j.crad.2015.06.093. –.
    1. Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ. Prostate Imaging Reporting and Data System Version 2.1: 2019 update of Prostate Imaging Reporting and Data System Version 2. Eur Urol. 2019;0232:1. doi: 10.1016/j.eururo.2019.02.033. et al. –.
    1. Caglic I, Povalej Brzan P, Warren AY, Bratt O, Shah N, Barrett T. Defining the incremental value of 3D T2-weighted imaging in the assessment of prostate cancer extracapsular extension. Eur Radiol. 2019. [Epub ahead of print]. doi.
    1. Thoeny HC, Froehlich JM, Triantafyllou M, Huesler J, Bains LJ, Vermathen P. Metastases in normal-sized pelvic lymph nodes: detection with diffusion-weighted MR imaging. Radiology. 2014;273:125. doi: 10.1148/radiol.14132921. et al. –.
    1. Slough RA, Caglic I, Hansen NL, Patterson AJ, Barrett T. Effect of hyoscine butylbromide on prostate multiparametric MRI anatomical and functional image quality. Clin Radiol. 2018;73:216. doi: 10.1016/j.crad.2017.07.013. e9-14. doi.
    1. Ullrich T, Quentin M, Schmaltz AK, Arsov C, Rubbert C, Blondin D. Hyoscine butylbromide significantly decreases motion artefacts and allows better delineation of anatomic structures in mp-MRI of the prostate. . Eur Radiol. 2018;28:17. et al. –.
    1. Caglic I, Barrett T. Optimising prostate mpMRI: prepare for success. Clin Radiol. 2019. [Epub ahead of print]. doi.
    1. Dyde R, Chapman AH, Gale R, Mackintosh A, Tolan DJM. Precautions to be taken by radiologists and radiographers when prescribing hyoscine-N-butyl-bromide. . Clin Radiol. 2008;63:739. –.
    1. Ayala AG, Ro JY, Babaian R, Troncoso P, Grignon DJ. The prostatic capsule. Am J Surg Pathol. 1989;13:21. doi: 10.1097/00000478-19890100000003. –.
    1. McNeal JE.. Normal histology of the prostate. Am J Surg Pathol. 1988;12:619. doi: 10.1097/00000478-198808000-00003. –.
    1. Ball MW, Partin AW, Epstein JI. Extent of extraprostatic extension independently influences biochemical recurrence-free survival: evidence for further PT3 subclassification. . Urology. 2015;85:161. –.
    1. Rosenkrantz AB, Shanbhogue AK, Wang A, Kong MX, Babb JS, Taneja SS. Length of capsular contact for diagnosing extraprostatic extension on prostate MRI: assessment at an optimal threshold. J Magn Reson Imaging. 2016;43:990. doi: 10.1002/jmri.25040. –.
    1. Eifler JB, Feng Z, Lin BM, Partin MT, Humphreys EB, Han M. An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int. 2013;111:22. doi: 10.1111/j.1464-410X.2012.11324.x. et al. –.
    1. Turkbey B, Mani H, Aras O, Ho J, Hoang A, Rastinehad AR. Prostate cancer: can multiparametric MR imaging help identify patients who are candidates for active surveillance? Radiology. 2013;268:144. doi: 10.1148/radiol.13121325. et al. –.
    1. de Rooij M, Hamoen EHJ, Witjes JA, Barentsz JO, Rovers MM. Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis. Eur Urol. 2016;70:233. doi: 10.1016/j.eururo.2015.07.029. –.
    1. Lawrence EM, Gallagher FA, Barrett T, Warren AY, Priest AN, Goldman DA. Preoperative 3-T diffusion-weighted MRI for the qualitative and quantitative assessment of extracapsular extension in patients with intermediate - or high-risk prostate cancer. AJR Am J Roentgenol. 2014;203:W280. doi: 10.2214/AJR.13.11754. et al. –.
    1. Boesen L, Chabanova E, Løgager V, Balslev I, Mikines K, Thomsen HS. Prostate cancer staging with extracapsular extension risk scoring using multiparametric MRI: a correlation with histopathology. Eur Radiol. 2015;25:1776. doi: 10.1007/s00330-014-3543-9. –.
    1. Schieda N, Quon JS, Lim C, El-Khodary M, Shabana W, Singh V. Evaluation of the European Society of Urogenital Radiology (ESUR) PI-RADS scoring system for assessment of extra-prostatic extension in prostatic carcinoma. Eur J Radiol. 2015;84:1843. doi: 10.1016/j.ejrad.2015.06.016. et al. –.
    1. Baco E, Rud E, Vlatkovic L, Svindland A, Eggesbø HB, Hung AJ. Predictive value of magnetic resonance imaging determined tumor contact length for extracapsular extension of prostate cancer. J Urol. 2015;193:46672. doi: 10.1016/j.juro.2014.08.084. et al.
    1. Woo S, Kim SY, Cho JY, Kim SH. Length of capsular contact on prostate MRI as a predictor of extracapsular extension: which is the most optimal sequence? Acta Radiol. 2017;58:489. doi: 10.1177/0284185116658684. –.
    1. Matsuoka Y, Ishioka J, Tanaka H, Kimura T, Yoshida S, Saito K. Impact of the Prostate Imaging Reporting and Data System, Version 2, on MRI diagnosis for extracapsular extension of prostate cancer. . AJR Am J Roentgenol. 2017;209:W76. et al. –.
    1. Hambrock T, Somford DM, Huisman HJ, van Oort IM, Witjes JA, Hulsbergenvan de Kaa CA. Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology. 2011;259:453. doi: 10.1148/radiol.11091409. et al. –.
    1. Verma S, Rajesh A, Morales H, Lemen L, Bills G, Delworth M. Assessment of aggressiveness of prostate cancer: correlation of apparent diffusion coefficient with histologic grade after radical prostatectomy. AJR Am J Roentgenol. 2011;196:374. doi: 10.2214/AJR.10.4441. et al. –.
    1. Kim CK, Park SY, Park JJ, Park BK. Diffusion-weighted MRI as a predictor of extracapsular extension in prostate cancer. AJR Am J Roentgenol. 2014;202:W270. doi: 10.2214/AJR.13.11333. –.
    1. Woo S, Cho JY, Kim SY, Kim SH. Extracapsular extension in prostate cancer: added value of diffusion-weighted MRI in patients with equivocal findings on T2-weighted imaging. AJR Am J Roentgenol. 2015;204:W168. doi: 10.2214/AJR.14.12939. –.
    1. Giganti F, Coppola A, Ambrosi A, Ravelli S, Esposito A, Freschi M. Apparent diffusion coefficient in the evaluation of side-specific extracapsular extension in prostate cancer: development and external validation of a nomogram of clinical use. Urol Oncol Semin Orig Investig. 2016;34:291. doi: 10.1016/j.urolonc.2016.02.015. et al. e9-17. doi.
    1. Barrett T, Priest AN, Lawrence EM, Goldman DA, Warren AY, Gnanapragasam VJ. Ratio of tumor to normal prostate tissue apparent diffusion coefficient as a method for quantifying DWI of the prostate. AJR Am J Roentgenol. 2015;205:W585. doi: 10.2214/AJR.15.14338. et al. –.
    1. Rosenkrantz AB, Neil J, Kong X, Melamed J, Babb JS, Taneja SS. Prostate cancer: comparison of 3D T2-weighted with conventional 2D T2-weighted imaging for image quality and tumor detection. AJR Am J Roentgenol. 2010;194:446. doi: 10.2214/AJR.09.3217. et al. –.
    1. Itatani R, Namimoto T, Takaoka H, Katahira K, Morishita S, Kitani K. Extracapsular extension of prostate cancer: diagnostic value of combined multiparametric magnetic resonance imaging and isovoxel 3-dimensional T2-weighted imaging at 1.5 T. J Comput Assist Tomogr. 2015;39:37. doi: 10.1097/RCT.0000000000000172. et al. –.
    1. Liberatore M, Delongchamps NB, Eiss D, Beuvon F, Zerbib M, Flam T. Endorectal 3D T2-weighted 1mm-slice thickness MRI for prostate cancer staging at 1.5Tesla: should we reconsider the indirects signs of extracapsular extension according to the D’Amico tumor risk criteria? Eur J Radiol. 2011;81:e591. doi: 10.1016/j.ejrad.2011.06.056. et al. –.
    1. Jäderling F, Nyberg T, Öberg M, Carlsson S, Skorpil M, Blomqvist L. Accuracy in local staging of prostate cancer by adding a three-dimensional T2-weighted sequence with radial reconstructions in magnetic resonance imaging. Acta Radiol Open. 2018;7:205846011875460. doi: 10.1177/2058460118754607.
    1. Peng Y, Schmid-Tannwald C, Wang S, Antic T, Jiang Y, Eggener S. Seminal vesicle invasion in prostate cancer: evaluation by using multiparametric endorectal MR imaging. Radiology. 2013;267:797. doi: 10.1148/radiol.13121319. et al. –.
    1. Chan KK, Choi D, Byung KP, Ghee YK, Hyo KL. Diffusion-weighted MR imaging for the evaluation of seminal vesicle invasion in prostate cancer: initial results. J Magn Reson Imaging. 2008;28:963. doi: 10.1002/jmri.21531. –.
    1. Potter SR, Epstein JI, Partin AW. Seminal vesicle invasion by prostate cancer: prognostic significance and therapeutic implications. Rev Urol. 2000;2:190. –. PMID: 16985773.
    1. Wang L, Hricak H, Kattan MW, Chen HN, Kuroiwa K, Eisenberg HF. Prediction of seminal vesicle invasion in prostate cancer: incremental value of adding endorectal MR imaging to the Kattan nomogram. Radiology. 2007;242:182. doi: 10.1148/radiol.2421051254. et al. –.
    1. Grivas N, Hinnen K, de Jong J, Heemsbergen W, Moonen L, Witteveen T. Seminal vesicle invasion on multi-parametric magnetic resonance imaging: correlation with histopathology. Eur J Radiol. 2018;98:107. doi: 10.1016/j.ejrad.2017.11.013. et al. –.
    1. Roethke M, Kaufmann S, Kniess M, Ketelsen D, Claussen CD, Schlemmer HP. Seminal vesicle invasion: accuracy and analysis of infiltration patterns with high-spatial resolution T2-weighted sequences on endorectal magnetic resonance imaging. Urol Int. 2014;92:294. doi: 10.1159/000353968. et al. –.
    1. Ohori M, Scardino PT, Lapin SL, Seale-Hawkins C, Link J, Wheeler TM. The mechanisms and prognostic significance of seminal vesicle involvement by prostate cancer. Am J Surg Pathol. 1993;17:1252. doi: 10.1097/00000478-199312000-00006. –.
    1. Jung DC, Lee HJ, Kim SH, Choe GY, Lee SE. Preoperative MR imaging in the evaluation of seminal vesicle invasion in prostate cancer: pattern analysis of seminal vesicle lesions. J Magn Reson Imaging. 2008;28:144. doi: 10.1002/jmri.21422. –.
    1. Soylu FN, Peng Y, Jiang Y, Wang S, Schmid-Tannwald C, Sethi I. Seminal vesicle invasion in prostate cancer: evaluation by using multiparametric endorectal MR imaging. Radiology. 2013;267:797. doi: 10.1148/radiol.13121319. et al. –.
    1. Gofrit ON, Zorn KC, Taxy JB, Zagaja GP, Steinberg GD, Shalhav AL. The dimensions and symmetry of the seminal vesicles. J Robot Surg. 2009;3:29. doi: 10.1007/s11701-009-0134-x. –.
    1. Saliken JC, Gray RR, Donnelly BJ, Owen R, White LJ, Ali-Ridha N. Extraprostatic biopsy improves the staging of localized prostate cancer. Can Assoc Radiol J. 2000;51:114. et al. –. PMID: 10786920.
    1. Barrett T, Tanner J, Gill AB, Slough RA, Wason J, Gallagher FA. The longitudinal effect of ejaculation on seminal vesicle fluid volume and whole-prostate ADC as measured on prostate MRI. Eur Radiol. 2017;27:5236. doi: 10.1007/s00330-017-4905-x. –.
    1. Medved M, Sammet S, Yousuf A, Oto A. MR Imaging of the prostate and adjacent anatomic structures before, during, and after ejaculation: qualitative and quantitative evaluation. Radiology. 2014;271:452. doi: 10.1148/radiol.14131374. –.
    1. Shin T, Kaji Y, Shukuya T, Nozaki M, Soh S, Okada H. Significant changes of T2 value in the peripheral zone and seminal vesicles after ejaculation. Eur Radiol. 2018;28:1009. doi: 10.1007/s00330-017-5077-4. –.
    1. Kabakus IM, Borofsky S, Mertan FV, Greer M, Daar D, Wood BJ. Does abstinence from ejaculation before prostate MRI improve evaluation of the seminal vesicles? AJR Am J Roentgenol. 2016;207:1205. doi: 10.2214/AJR.16.16278. et al. –.
    1. McMahon CJ, Rofsky NM, Pedrosa I. Lymphatic metastases from pelvic tumors: anatomic classification, characterization, and staging. Radiology. 2010;254:31. doi: 10.1148/radiol.2541090361. –.
    1. Joniau S, Van den Bergh L, Lerut E, Deroose CM, Haustermans K, Oyen R. Mapping of pelvic lymph node metastases in prostate cancer. Eur Urol. 2013;63:450. doi: 10.1016/j.eururo.2012.06.057. et al. –.
    1. Briganti A, Suardi N, Capogrosso P, Passoni N, Freschi M, Di Trapani E. Lymphatic spread of nodal metastases in high-risk prostate cancer: the ascending pathway from the pelvis to the retroperitoneum. Prostate. 2012;72:186. doi: 10.1002/pros.21420. et al. –.
    1. Barentsz JO, Severens JL, Hoogeveen YL, Hövels AM, Adang EM, Jager GJ. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol. 2008;63:387. doi: 10.1016/j.crad.2007.05.022. et al. –.
    1. Vag T, Heck MM, Beer AJ, Souvatzoglou M, Weirich G, Holzapfel K. Preoperative lymph node staging in patients with primary prostate cancer: comparison and correlation of quantitative imaging parameters in diffusion-weighted imaging and 11C-choline PET/CT. Eur Radiol. 2014;24:1821. doi: 10.1007/s00330-014-3240-8. et al. –.
    1. Eiber M, Beer AJ, Holzapfel K, Tauber R, Ganter C, Weirich G. Preliminary results for characterization of pelvic lymph nodes in patients with prostate cancer by diffusion-weighted MR-imaging. Invest Radiol. 2010;45:15. doi: 10.1097/RLI.0b013e3181bbdc2f. et al. –.
    1. Beer AJ, Eiber M, Souvatzoglou M, Holzapfel K, Ganter C, Weirich G. Restricted water diffusibility as measured by diffusion-weighted MR imaging and choline uptake in 11C-choline PET/CT are correlated in pelvic lymph nodes in patients with prostate cancer. Mol Imaging Biol. 2011;13:352. doi: 10.1007/s11307-010-0337-6. et al. –.
    1. Vallini V, Ortori S, Boraschi P, Manassero F, Gabelloni M, Faggioni L. Staging of pelvic lymph nodes in patients with prostate cancer: usefulness of multiple b value SE-EPI diffusion-weighted imaging on a 3.0 T MR system. Eur J Radiol Open. 2016;3:16. doi: 10.1016/j.ejro.2015.11.004. et al. –.
    1. Roy C, Bierry G, Matau A, Bazille G, Pasquali R. Value of diffusion-weighted imaging to detect small malignant pelvic lymph nodes at 3 T. Eur Radiol. 2010;20:1803. doi: 10.1007/s00330-010-1736-4. –.
    1. Caglic I, Barrett T. Diffusion-weighted imaging (DWI) in lymph node staging for prostate cancer. Transl Androl Urol. 2018;7:814. doi: 10.21037/tau.2018.08.04. –.
    1. Abdel Razek AAK, Soliman NY, Elkhamary S, Alsharaway MK, Tawfik A. Role of diffusion-weighted MR imaging in cervical lymphadenopathy. Eur Radiol. 2006;16:1468. doi: 10.1007/s00330-005-0133-x. –.
    1. Muenzel D, Duetsch S, Fauser C, Slotta-Huspenina J, Gaa J, Rummeny EJ. Diffusion-weighted magnetic resonance imaging in cervical lymphadenopathy: report of three cases of patients with bartonella henselae infection mimicking malignant disease. Acta Radiol. 2009;50:914. doi: 10.1080/02841850903061445. et al. –.
    1. Kwee TC, Takahara T, Luijten PR, Nievelstein RAJ. ADC measurements of lymph nodes: inter- and intra-observer reproducibility study and an overview of the literature. Eur J Radiol. 2010;75:215. doi: 10.1016/j.ejrad.2009.03.026. –.
    1. Braithwaite AC, Dale BM, Boll DT, Merkle EM. Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology. 2009;250:459. doi: 10.1148/radiol.2502080849. –.
    1. Rosenkrantz AB, Oei M, Babb JS, Niver BE, Taouli B. Diffusion-weighted imaging of the abdomen at 3.0 Tesla: image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla. J Magn Reson Imaging. 2011;33:128. doi: 10.1002/jmri.22395. –.
    1. Sadinski M, Medved M, Karademir I, Wang S, Peng Y, Jiang Y. Short-term reproducibility of apparent diffusion coefficient estimated from diffusion-weighted MRI of the prostate. Abdom Imaging. 2015;40:2523. doi: 10.1007/s00261-015-0396-x. et al. –.
    1. von Below C, Daouacher G, Wassberg C, Grzegorek R, Gestblom C, Sörensen J. Validation of 3 T MRI including diffusion-weighted imaging for nodal staging of newly diagnosed intermediate- and high-risk prostate cancer. Clin Radiol. 2016;71:328. doi: 10.1016/j.crad.2015.12.001. et al. –.
    1. Sushentsev N, Martin H, Rimmer Y, Barrett T. Added value of diffusion-weighted MRI for nodal radiotherapy planning in pelvic malignancies. Clin Transl Oncol. 2019 doi: 10.1007/s12094-019-02068-0. [Epub ahead of print]
    1. Zacharias C, Kunder C, Giesel F, Daniel B, Hatami N, Harrison C. Gallium 68 PSMA-11 PET/MR imaging in patients with intermediate- or high-risk prostate cancer. . Radiology. 2018;288:495. et al. –.
    1. Freitag MT, Radtke JP, Hadaschik BA, Kopp-Schneider A, Eder M, Kopka K. Comparison of hybrid 68Ga-PSMA PET/MRI and 68Ga-PSMA PET/CT in the evaluation of lymph node and bone metastases of prostate cancer. Eur J Nucl Med Mol Imaging. 2016;43:70. doi: 10.1007/s00259-015-3206-3. et al. –.
    1. Baltzer P, Kenner L, Hartenbach M, Mitterhauser M, Goldner GM, Grahovac M. PSMA Ligand PET/MRI for primary prostate cancer: staging performance and clinical impact. Clin Cancer Res. 2018;24:6300. doi: 10.1158/1078-0432.ccr-18-0768. et al. –.
    1. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348:2491. doi: 10.1056/NEJMoa022749. et al. –.
    1. Birkhäuser FD, Studer UE, Froehlich JM, Triantafyllou M, Bains LJ, Petralia G. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging facilitates detection of metastases in normal-sized pelvic lymph nodes of patients with bladder and prostate cancer. Eur Urol. 2013;64:953. doi: 10.1016/j.eururo.2013.07.032. et al. –.
    1. Thoeny HC, Triantafyllou M, Birkhaeuser FD, Froehlich JM, Tshering DW, Binser T. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur Urol. 2009;55:761. doi: 10.1016/j.eururo.2008.12.034. et al. –.
    1. Fortuin AS, Brüggemann R, van der Linden J, Panfilov I, Israël B, Scheenen TWJ. Ultra-small superparamagnetic iron oxides for metastatic lymph node detection: back on the block. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology. 2018;10:e1471. doi: 10.1002/wnan.1471. et al.
    1. National Institute for Health and Care Excellence. Prostate cancer: diagnosis and management, clinical guideline [CG175] 2014. [cited 2019 March 28] Available at.
    1. Shen G, Deng H, Hu S, Jia Z. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol. 2014;43:1503. doi: 10.1007/s00256-014-1903-9. –.
    1. Padhani AR, Koh D-M, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology. 2011;261:700. doi: 10.1148/radiol.11110474. –.
    1. Padhani AR, Lecouvet FE, Tunariu N, Koh D-M, De Keyzer F, Collins DJ. METastasis Reporting and Data System for Prostate Cancer: practical guidelines for acquisition, interpretation, and reporting of whole-body magnetic resonance imaging-based evaluations of multiorgan involvement in advanced prostate cancer. Eur Urol. 2017;71:81. doi: 10.1016/j.eururo.2016.05.033. et al. –.
    1. Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. 2012;62:68. doi: 10.1016/j.eururo.2012.02.020. et al. –.
    1. Pasoglou V, Michoux N, Peeters F, Larbi A, Tombal B, Selleslagh T. Whole-body 3D T1-weighted MR imaging in patients with prostate cancer: feasibility and evaluation in screening for metastatic disease. Radiology. 2015;275:155. doi: 10.1148/radiol.14141242. et al. –.
    1. Larbi A, Pasoglou V, Triqueneaux P, Cyteval C, Tombal B, Omoumi P. Whole-body MRI to assess bone involvement in prostate cancer and multiple myeloma: comparison of the diagnostic accuracies of the T1, short tau inversion recovery (STIR), and high b-values diffusion-weighted imaging (DWI) sequences. Eur Radiol. 2018 doi: 10.1007/s00330-018-5796-1. et al. [Epub ahead of print]. doi.

Source: PubMed

3
Iratkozz fel