Intraspinal Transplantation of the Adipose Tissue-Derived Regenerative Cells in Amyotrophic Lateral Sclerosis in Accordance with the Current Experts' Recommendations: Choosing Optimal Monitoring Tools

Magdalena Kuzma-Kozakiewicz, Andrzej Marchel, Anna Kaminska, Malgorzata Gawel, Jan Sznajder, Anna Figiel-Dabrowska, Arkadiusz Nowak, Edyta Maj, Natalia Ewa Krzesniak, Bartlomiej H Noszczyk, Krystyna Domanska-Janik, Anna Sarnowska, Magdalena Kuzma-Kozakiewicz, Andrzej Marchel, Anna Kaminska, Malgorzata Gawel, Jan Sznajder, Anna Figiel-Dabrowska, Arkadiusz Nowak, Edyta Maj, Natalia Ewa Krzesniak, Bartlomiej H Noszczyk, Krystyna Domanska-Janik, Anna Sarnowska

Abstract

Stem cells (SCs) may constitute a perspective alternative to pharmacological treatment in neurodegenerative diseases. Although the safety of SC transplantation has been widely shown, their clinical efficiency in amyotrophic lateral sclerosis (ALS) is still to be proved. It is not only due to a limited number of studies, small treatment groups, and fast but nonlinear disease progression but also due to lack of objective methods able to show subtle clinical changes. Preliminary guidelines for cell therapy have recently been proposed by a group of ALS experts. They combine clinical, neurophysiological, and functional assessment together with monitoring of the cytokine level. Here, we describe a pilot study on transplantation of autologous adipose-derived regenerative cells (ADRC) into the spinal cord of the patients with ALS and monitoring of the results in accordance with the current recommendations. To show early and/or subtle changes within the muscles of interest, a wide range of clinical and functional tests were used and compared in order to choose the most sensitive and optimal set. Additionally, an analysis of transplanted ADRC was provided to develop standards ensuring the derivation and verification of adequate quality of transplanted cells and to correlate ADRC properties with clinical outcome.

Figures

Figure 1
Figure 1
Patient's assessment paradigm. The diagram presents the applied electrophysiological methods, psychological assessment, and functional tests, along with their assignment to specific functions.
Figure 2
Figure 2
Cytokine and chemokine level in CSF after ADRC application. (a) Membrane-based antibody arrays for the parallel determination of the relative levels of human cytokines and chemokines from CSF of ALS patients (resp. P1, P2, and P3). (b) Comparison of TNFα, IFN-γ, IL-1β, IL-6, bFGF, and MMP-9 level after MSC transplantation ( black graph bars—3 months after ADRC application, grey bars—24 hours after cell application). (c) Quantification of CFU frequency. ADRCs obtained after enzymatic isolation were analyzed to evaluate the stem cell/clonogenic population among a heterogeneous stromal cell population.
Figure 3
Figure 3
The qualification scheme of patients according to the proposal during the International Workshop on Progress in Stem Cells Research for ALS/MND in 2016.
Figure 4
Figure 4
Functional tests. According to Figure 1, functional tests evaluating muscle efficiency in the upper (FAT) and lower limbs (2MWT, TUG, and 5STS) and trunk (TCT) were performed in several time points before, in the course of, and after ADRC therapy. The stability or decrease in these functions was compared with the trajectory of the ALSFRS scale. Impairment in all functional tests was observed faster than decrease in ALSFRS. Although 5STS and TUG showed good correlation with other functional parameters, their longitudinal use was limited in patients who were no longer able to stand up without the help of their arms/hands (on average 6–9 months after the first transplantation; P3 and P4).
Figure 5
Figure 5
Muscle strength and electrophysiological assessment. The detailed clinical evaluation performed within one week of the neurosurgery procedure and repeated every 3 months throughout the project was complemented with ALS-FRS-R, MRC, MUNIX, and HHD evaluation. ALSFRS R and MRC shared a similar deterioration pattern. The slope of decline was much steeper in the case of both MUNIX and muscle strength as examined by HHD. The MUNIX and HHD showed a marked decline even when the values of ALSFRS R and MRC were still stable ( P1, P2, and P3—resp. patient 1, patient 2, and patient 3).
Figure 6
Figure 6
Comparison of the course of the disease before and after the cell therapy. The graphs show the course of disease preceding the use of ADRC (blue graph) and the course of disease during cell therapy.

References

    1. Haverkamp L. J., Appel V., Appel S. H. Natural history of amyotrophic lateral sclerosis in a database population. Validation of a scoring system and a model for survival prediction. Brain. 1995;118(3):707–719. doi: 10.1093/brain/118.3.707.
    1. Miller R. G., Mitchell J. D., Lyon M., Moore D. H. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND) Cochrane Database of Systematic Reviews. 2002;3 doi: 10.1002/14651858.cd001447.
    1. The Edaravone (Mci-186) Als 16 Study Group. A post-hoc subgroup analysis of outcomes in the first phase III clinical study of edaravone (MCI-186) in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2017;18(sup1):11–19. doi: 10.1080/21678421.2017.1363780.
    1. Miller T. M., Pestronk A., David W., et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurology. 2013;12(5):435–442. doi: 10.1016/S1474-4422(13)70061-9.
    1. Crisp M. J., Mawuenyega K. G., Patterson B. W., et al. In vivo kinetic approach reveals slow SOD1 turnover in the CNS. The Journal of Clinical Investigation. 2015;125(7):2772–2780. doi: 10.1172/JCI80705.
    1. Deda H., Inci M. C., Kürekçi A. E., et al. Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up. Cytotherapy. 2009;11(1):18–25. doi: 10.1080/14653240802549470.
    1. Mazzini L., Mareschi K., Ferrero I., et al. Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy. 2012;14(1):56–60. doi: 10.3109/14653249.2011.613929.
    1. Riley J., Federici T., Polak M., et al. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I safety trial, technical note, and lumbar safety outcomes. Neurosurgery. 2012;71(2):405–416. doi: 10.1227/NEU.0b013e31825ca05f.
    1. Atassi N., Beghi E., Blanquer M., et al. Intraspinal stem cell transplantation for amyotrophic lateral sclerosis: ready for efficacy clinical trials? Cytotherapy. 2016;18(12):1471–1475. doi: 10.1016/j.jcyt.2016.08.005.
    1. Lech W., Figiel-Dabrowska A., Sarnowska A., et al. Phenotypic, functional, and safety control at preimplantation phase of MSC-based therapy. Stem Cells International. 2016;2016:13. doi: 10.1155/2016/2514917.
    1. Dabrowska S., Sypecka J., Jablonska A., et al. Neuroprotective potential and paracrine activity of stromal vs. culture-expanded hMSC derived from Wharton jelly under co-cultured with hippocampal organotypic slices. Molecular Neurobiology. 2018;55(7):6021–6036. doi: 10.1007/s12035-017-0802-1.
    1. Tyndall A., Walker U. A., Cope A., et al. Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005. Arthritis Research & Therapy. 2007;9(1):p. 301. doi: 10.1186/ar2103.
    1. Kanno H. Regenerative therapy for neuronal diseases with transplantation of somatic stem cells. World Journal of Stem Cells. 2013;5(4):163–171. doi: 10.4252/wjsc.v5.i4.163.
    1. Gornicka-Pawlak el B., Janowski M., Habich A., et al. Systemic treatment of focal brain injury in the rat by human umbilical cord blood cells being at different level of neural commitment. Acta Neurobiologiae Experimentalis. 2011;71(1):46–64.
    1. Fraser J. K., Hicok K. C., Shanahan R., Zhu M., Miller S., Arm D. M. The Celution® system: automated processing of adipose-derived regenerative cells in a functionally closed system. Advances in Wound Care. 2014;3(1):38–45. doi: 10.1089/wound.2012.0408.
    1. Marino G., Moraci M., Armenia E., et al. Therapy with autologous adipose-derived regenerative cells for the care of chronic ulcer of lower limbs in patients with peripheral arterial disease. The Journal of Surgical Research. 2013;185(1):36–44. doi: 10.1016/j.jss.2013.05.024.
    1. Krześniak N. E., Noszczyk B. H. Autologous fat transfer in secondary carpal tunnel release. Plastic and Reconstructive Surgery - Global Open. 2015;3(5, article e401) doi: 10.1097/GOX.0000000000000374.
    1. Kleyweg R. P., Van Der Meché F. G. A., Schmitz P. I. M. Interobserver agreement in the assessment of muscle strength and functional abilities in Guillain-Barré syndrome. Muscle & Nerve. 1991;14(11):1103–1109. doi: 10.1002/mus.880141111.
    1. Shefner J. M. Strength testing in motor neuron diseases. Neurotherapeutics. 2017;14(1):154–160. doi: 10.1007/s13311-016-0472-0.
    1. Cedarbaum J. M., Stambler N. Performance of the amyotrophic lateral sclerosis functional rating scale (ALSFRS) in multicenter clinical trials. Journal of the Neurological Sciences. 1997;152(Suppl 1):S1–S9. doi: 10.1016/S0022-510X(97)00237-2.
    1. Heller A., Wade D. T., Wood V. A., Sunderland A., Hewer R. L., Ward E. Arm function after stroke: measurement and recovery over the first three months. Journal of Neurology, Neurosurgery, and Psychiatry. 1987;50(6):714–719. doi: 10.1136/jnnp.50.6.714.
    1. Collin C., Wade D. Assessing motor impairment after stroke: a pilot reliability study. Journal of Neurology, Neurosurgery, and Psychiatry. 1990;53(7):576–579. doi: 10.1136/jnnp.53.7.576.
    1. Butland R. J., Pang J., Gross E. R., Woodcock A. A., Geddes D. M. Two-, six-, and 12-minute walking tests in respiratory disease. BMJ. 1982;284(6329):1607–1608. doi: 10.1136/bmj.284.6329.1607.
    1. Borg G. A. V. Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise. 1982;14(5):377–381. doi: 10.1249/00005768-198205000-00012.
    1. Krupp L. B., LaRocca N. G., Muir-Nash J., Steinberg A. D. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Archives of Neurology. 1989;46(10):1121–1123. doi: 10.1001/archneur.1989.00520460115022.
    1. Mathias S., Nayak U. S., Isaacs B. Balance in elderly patients: the “get-up and go” test. Archives of Physical Medicine and Rehabilitation. 1986;67(6):387–389.
    1. Podsiadlo D., Richardson S. The timed “up & go”: a test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society. 1991;39(2):142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x.
    1. Newcomer K. L., Krug H. E., Mahowald M. L. Validity and reliability of the timed-stands test for patients with rheumatoid arthritis and other chronic diseases. The Journal of Rheumatology. 1993;20(1):21–27.
    1. Ashworth N. L., Satkunam L. E., Deforge D. Treatment for spasticity in amyotrophic lateral sclerosis/motor neuron disease. The Cochrane Database of Systematic Reviews. 2012;2 doi: 10.1002/14651858.CD004156.pub4.
    1. Bohannon R. W. Reference values for the five-repetition sit-to-stand test: a descriptive meta-analysis of data from elders. Perceptual and Motor Skills. 2016;103(1):215–222. doi: 10.2466/pms.103.1.215-222.
    1. Hammer E. M., Häcker S., Hautzinger M., Meyer T. D., Kübler A. Validity of the ALS-Depression-Inventory (ADI-12)— a new screening instrument for depressive disorders in patients with amyotrophic lateral sclerosis. Journal of Affective Disorders. 2008;109(1-2):213–219. doi: 10.1016/j.jad.2007.11.012.
    1. Bernham J. L. How to get serious answers to the serious question: “how have you been?”: subjective quality of life (QOL) as an individual experiential emergent construct. Bioethics. 1999;13(3-4):272–287. doi: 10.1111/1467-8519.00156.
    1. Neuwirth C., Weber M., Stålberg E., et al. Motor Unit Number Index (MUNIX): a novel neurophysiological marker for neuromuscular disorders; test-retest reliability in healthy volunteers. Clinical Neurophysiology. 2011;122(9):1867–1872. doi: 10.1016/j.clinph.2011.02.017.
    1. Mitsumoto H., Brooks B. R., Silani V. Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? The Lancet Neurology. 2014;13(11):1127–1138. doi: 10.1016/S1474-4422(14)70129-2.
    1. Hamidou B., Marin B., Lautrette G., et al. Exploring the diagnosis delay and ALS functional impairment at diagnosis as relevant criteria for clinical trial enrolment. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2017;18(7-8):519–527. doi: 10.1080/21678421.2017.1353098.
    1. Boekestein W. A., Schelhaas H. J., van Putten M. J. A. M., Stegeman D. F., Zwarts M. J., van Dijk J. P. Motor unit number index (MUNIX) versus motor unit number estimation (MUNE): a direct comparison in a longitudinal study of ALS patients. Clinical Neurophysiology. 2012;123(8):1644–1649. doi: 10.1016/j.clinph.2012.01.004.
    1. Neuwirth C., Nandedkar S., StåLberg E., Weber M. Motor unit number index (MUNIX): a novel neurophysiological technique to follow disease progression in amyotrophic lateral sclerosis. Muscle & Nerve. 2010;42(3):379–384. doi: 10.1002/mus.21707.
    1. Nandedkar S. D., Barkhaus P. E., Stålberg E. V. Reproducibility of MUNIX in patients with amyotrophic lateral sclerosis. Muscle & Nerve. 2011;44(6):919–922. doi: 10.1002/mus.22204.
    1. Neuwirth C., Barkhaus P. E., Burkhardt C., et al. Motor unit number index (MUNIX) detects motor neuron loss in pre-symptomatic muscles in amyotrophic lateral sclerosis. Clinical Neurophysiology. 2017;128(3):495–500. doi: 10.1016/j.clinph.2016.11.026.
    1. Marusiak J., Jaskólska A., Koszewicz M., Budrewicz S., Jaskólski A. Myometry revealed medication-induced decrease in resting skeletal muscle stiffness in Parkinson’s disease patients. Clinical Biomechanics. 2012;27(6):632–635. doi: 10.1016/j.clinbiomech.2012.02.001.
    1. Meseguer-Henarejos A. B., Sánchez-Meca J., López-Pina J. A., Carles-Hernández R. Inter- and intra-rater reliability of the Modified Ashworth Scale: a systematic review and meta-analysis. European Journal of Physical and Rehabilitation Medicine. 2017;13
    1. Beck M., Giess R., Würffel W., Magnus T., Ochs G., Toyka K. V. Comparison of maximal voluntary isometric contraction and Drachman’s hand-held dynamometry in evaluating patients with amyotrophic lateral sclerosis. Muscle & Nerve. 1999;22(9):1265–1270. doi: 10.1002/(SICI)1097-4598(199909)22:9<1265::AID-MUS15>;2-F.
    1. Escorcio-Bezerra M. L., Abrahao A., Santos-Neto D., de Oliveira Braga N. I., Oliveira A. S. B., Manzano G. M. Why averaging multiple MUNIX measures in the longitudinal assessment of patients with ALS? Clinical Neurophysiology. 2017;128(12):2392–2396. doi: 10.1016/j.clinph.2017.09.104.
    1. Visser J., Mans E., de Visser M., et al. Comparison of maximal voluntary isometric contraction and hand-held dynamometry in measuring muscle strength of patients with progressive lower motor neuron syndrome. Neuromuscular Disorders. 2003;13(9):744–750. doi: 10.1016/S0960-8966(03)00135-4.
    1. Mong Y., Teo T. W., Ng S. S. 5-Repetition sit-to-stand test in subjects with chronic stroke: reliability and validity. Archives of Physical Medicine and Rehabilitation. 2010;91(3):407–413. doi: 10.1016/j.apmr.2009.10.030.
    1. Ramirez C., Piemonte M. E. P., Callegaro D., Da Silva H. C. A. Fatigue in amyotrophic lateral sclerosis: frequency and associated factors. Amyotrophic Lateral Sclerosis. 2009;9(2):75–80. doi: 10.1080/17482960701642502.
    1. The EFNS Task Force on Diagnosis and Management of Amyotrophic Lateral Sclerosis, Andersen P. M., Abrahams S., et al. EFNS guidelines on the clinical management of amyotrophic lateral sclerosis (MALS)- revised report of an EFNS task force. European Journal of Neurology. 2012;19(3):360–375. doi: 10.1111/j.1468-1331.2011.03501.x.
    1. Abraham A., Drory V. E. Fatigue in motor neuron diseases. Neuromuscular Disorders. 2012;22(Supplement 3):S198–S202. doi: 10.1016/j.nmd.2012.10.013.
    1. Drory V. E., Goltsman E., Goldman Reznik J., Mosek A., Korczyn A. D. The value of muscle exercise in patients with amyotrophic lateral sclerosis. Journal of the Neurological Sciences. 2001;191(1-2):133–137. doi: 10.1016/S0022-510X(01)00610-4.
    1. Thakore N. J., Pioro E. P. Depression in ALS in a large self-reporting cohort. Neurology. 2016;86(11):1031–1038. doi: 10.1212/WNL.0000000000002465.
    1. Lulé D., Pauli S., Altintas E., et al. Emotional adjustment in amyotrophic lateral sclerosis (ALS) Journal of Neurology. 2012;259(2):334–341. doi: 10.1007/s00415-011-6191-x.
    1. Syková E., Rychmach P., Drahorádová I., et al. Transplantation of mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: results of phase I/IIa clinical trial. Cell Transplantation. 2017;26(4):647–658. doi: 10.3727/096368916X693716.
    1. Jozwiak S., Habich A., Kotulska K., et al. Intracerebroventricular transplantation of cord blood-derived neural progenitors in a child with severe global brain ischemic injury. Cell Medicine. 2010;1(2):71–80. doi: 10.3727/215517910X536618.
    1. Mazzini L., Mareschi K., Ferrero I., et al. Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurological Research. 2013;28(5):523–526. doi: 10.1179/016164106X116791.
    1. Tadesse T., Gearing M., Senitzer D., et al. Analysis of graft survival in a trial of stem cell transplant in ALS. Annals of Clinical Translational Neurology. 2014;1(11):900–908. doi: 10.1002/acn3.134.
    1. Moreau C., Devos D., Brunaud-Danel V., et al. Elevated IL-6 and TNF-α levels in patients with ALS: Inflammation or hypoxia? Neurology. 2005;65(12):1958–1960. doi: 10.1212/01.wnl.0000188907.97339.76.
    1. Lu C.-H., Allen K., Oei F., et al. Systemic inflammatory response and neuromuscular involvement in amyotrophic lateral sclerosis. Neurology - Neuroimmunology Neuroinflammation. 2016;3(4):p. e244. doi: 10.1212/NXI.0000000000000244.
    1. Hu Y., Cao C., Qin X. Y., et al. Increased peripheral blood inflammatory cytokine levels in amyotrophic lateral sclerosis: a meta-analysis study. Scientific Reports. 2017;7(1):p. 9094. doi: 10.1038/s41598-017-09097-1.
    1. Katyal N., Govindarajan R. Shortcomings in the current amyotrophic lateral sclerosis trials and potential solutions for improvement. Frontiers in Neurology. 2017;8 doi: 10.3389/fneur.2017.00521.
    1. Kraemer M., Buerger M., Berlit P. Diagnostic problems and delay of diagnosis in amyotrophic lateral sclerosis. Clinical Neurology and Neurosurgery. 2010;112(2):103–105. doi: 10.1016/j.clineuro.2009.10.014.

Source: PubMed

3
Iratkozz fel