Prognostic value of subclinical myocardial necrosis using high-sensitivity cardiac troponin T in patients with prediabetes

Marco Witkowski, Yuping Wu, Stanley L Hazen, W H Wilson Tang, Marco Witkowski, Yuping Wu, Stanley L Hazen, W H Wilson Tang

Abstract

Background: Risk stratification of patients with prediabetes is an unmet clinical need. Here, we examine the utility of subclinical myocardial necrosis assessed by high-sensitivity cardiac troponin T (hs-cTnT) in predicting health outcomes in stable subjects with prediabetes.

Methods: hs-cTnT was analyzed by a high-sensitivity assay (Roche 5th generation) in 2631 stable subjects with prediabetes (HbA1c 5.7-6.4% or fasting glucose 100-125 mg/dL without previous diagnosis of diabetes or glucose-lowering therapy) who underwent elective coronary angiography for cardiac evaluation, and followed for major adverse cardiac events (MACE; death, myocardial infarction, stroke) over 3 years and all-cause mortality over 5 years.

Results: In our study cohort, hs-cTnT was highly prevalent with a median level of 13 ng/L (interquartile range 8.2-21.6 ng/L). Hs-cTnT was independently associated with incident MACE at 3 years (Q4 vs. Q1 adjusted hazard ratio (HR) 2.42 [95% CI 1.69-3.46], P < 0.001) and 5-year mortality (adjusted HR 3.8 [95% CI 2.55-5.67], P < 0.001). This association remained significant in all subsets after adjustment for traditional risk factors and multiple factors known to increase hs-cTnT levels. Moreover, hs-cTnT independently predicted event risk in primary prevention subjects (n = 557, HR 5.46 [95% CI 1.50-19.89), p < 0.01) for MACE; HR 9.53 [95% CI 2.08-43.73] for all-cause mortality) and secondary prevention subjects (n = 2074, HR 1.86 [95% CI 1.31-2.66], P < 0.001 for MACE; and 2.7 [95% CI 1.79-4.08), P < 0.001 for all-cause mortality).

Conclusions: In stable prediabetic subjects, the presence of subclinical myocardial necrosis as detected by hs-cTnT portends heightened long-term adverse cardiovascular event risk. Hs-cTnT levels may help to stratify risk and improve clinical decision making in patients with prediabetes. Trial registration ClinicalTrials.gov Identifier: NCT00590200.

Keywords: Cardiac troponin T; Prediabetes; Prognosis.

Conflict of interest statement

Dr. Hazen reports being named as co-inventor on pending and issued patents held by the Cleveland Clinic relating to cardiovascular diagnostics and therapeutics. Dr. Hazen also reports being a paid consultant for Procter & Gamble, having received research funds from Procter & Gamble, and Roche Diagnostics, and being eligible to receive royalty payments for inventions or discoveries related to cardiovascular diagnostics or therapeutics from Cleveland HeartLab, a fully owned subsidiary of Quest Diagnostics, and Procter & Gamble. Dr. Tang has served as a paid consultant for Sequana Medical AG, Owkin Inc, Relypsa Inc, Cardiol Therapeutics Inc, preCARDIA Inc, Genomics plc, and received honoraria from Springer Nature and American Board of Internal Medicine, all unrelated to the present topic. The other authors have reported that they have no relationships relevant to the contents of this paper to disclose.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Kaplan–Meier estimates and the risk of incident major adverse cardiac events (MACE, defined as myocardial infarction, stroke, or death) as well as all-cause mortality over follow-up periods of 3 and 5 years, respectively, stratified by quartile of hs-cTnT levels. Shown is the analysis for all patients (A, B), primary prevention subjects (C, D) and secondary prevention subjects (E, F)
Fig. 2
Fig. 2
Forest plots indicating the risks of incident MACE at 3 years and death after 5 years ranked by quartiles of hs-cTnT levels. The multivariable Cox model for hazard ratio included adjustments for age, sex, systolic blood pressure, low density lipoprotein cholesterol, high density lipoprotein cholesterol, smoking and estimated glomerular filtration rate. The 5–95% confidence interval is indicated by line length. Shown is the analysis for all patients (A, B), primary prevention subjects (C, D) and secondary prevention subjects (E, F)
Fig. 3
Fig. 3
Forest plot of the hazard ratio for A MACE in 3 years and B 5-year all-cause mortality risk comparing first and fourth quartiles of hs-cTnT levels in different groups as indicated. The 5–95% confidence interval is indicated by line length. P value for trend was calculated by Cochran–Armitage and Jonckheere–Terpstra tests of trend to compare baseline characteristics across increasing quartiles of hs-cTnT for categorical and continuous variables, respectively. CAD coronary artery disease, eGFR estimated glomerular filtration rate, LDL low density lipoprotein cholesterol, PAD peripheral artery disease, TRGs triglycerides
Fig. 4
Fig. 4
Cubic spline curves of the hazard ration (HR) for A major adverse cardiac events (MACE, death, nonfatal myocardial infarction, and stroke) at 3 years and B death at 5 years with hs-cTnT levels

References

    1. Classification and Diagnosis of Diabetes Standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S13–S28.
    1. Centers for Disease Control and Prevention. National diabetes statistics report A, GA: Centers for Disease Control and Prevention, US Department of Health and Human Services; 2017.
    1. De Caterina R, Madonna R. Impaired fasting plasma glucose and long-term cardiovascular risk: still a foggy relationship. Eur Heart J. 2010;31(10):1159–1162. doi: 10.1093/eurheartj/ehp589.
    1. Schöttker B, Müller H, Rothenbacher D, Brenner H. Fasting plasma glucose and HbA1c in cardiovascular risk prediction: a sex-specific comparison in individuals without diabetes mellitus. Diabetologia. 2013;56(1):92–100. doi: 10.1007/s00125-012-2707-x.
    1. Gordon-Dseagu VLZ, Mindell JS, Steptoe A, Moody A, Wardle J, Demakakos P, et al. Impaired glucose metabolism among those with and without diagnosed diabetes and mortality: a cohort study using health survey for England data. PLoS ONE. 2015;10(3):e0119882. doi: 10.1371/journal.pone.0119882.
    1. Selvin E, Lazo M, Chen Y, Shen L, Rubin J, McEvoy JW, et al. Diabetes mellitus, prediabetes, and incidence of subclinical myocardial damage. Circulation. 2014;130(16):1374–1382. doi: 10.1161/CIRCULATIONAHA.114.010815.
    1. Doi Y, Ninomiya T, Hata J, Fukuhara M, Yonemoto K, Iwase M, et al. Impact of glucose tolerance status on development of ischemic stroke and coronary heart disease in a general Japanese population: the Hisayama study. Stroke. 2010;41(2):203–209. doi: 10.1161/STROKEAHA.109.564708.
    1. de Ritter R, Sep SJS, van der Kallen CJH, van Greevenbroek MMJ, de Jong M, Vos RC, et al. Sex differences in the association of prediabetes and type 2 diabetes with microvascular complications and function: the Maastricht study. Cardiovasc Diabetol. 2021;20(1):102. doi: 10.1186/s12933-021-01290-x.
    1. Åkerblom A, Wojdyla D, Steg PG, Wallentin L, James SK, Budaj A, et al. Prevalence and relevance of abnormal glucose metabolism in acute coronary syndromes: insights from the PLATelet inhibition and patient outcomes (PLATO) trial. J Thromb Thrombolysis. 2019;48(4):563–569. doi: 10.1007/s11239-019-01938-2.
    1. Kiviniemi AM, Lepojarvi ES, Tulppo MP, Piira OP, Kentta TV, Perkiomaki JS, et al. Prediabetes and risk for cardiac death among patients with coronary artery disease: the ARTEMIS study. Diabetes Care. 2019;42(7):1319–1325. doi: 10.2337/dc18-2549.
    1. Shahim B, De Bacquer D, De Backer G, Gyberg V, Kotseva K, Mellbin L, et al. The prognostic value of fasting plasma glucose, two-hour postload glucose, and HbA1c in patients with coronary artery disease: a report from EUROASPIRE IV: a survey from the European society of cardiology. Diabetes Care. 2017;40(9):1233–1240. doi: 10.2337/dc17-0245.
    1. Tang WH, Wu Y, Nicholls SJ, Brennan DM, Pepoy M, Mann S, et al. Subclinical myocardial necrosis and cardiovascular risk in stable patients undergoing elective cardiac evaluation. Arterioscler Thromb Vasc Biol. 2010;30(3):634–640. doi: 10.1161/ATVBAHA.109.201210.
    1. Grodin JL, Neale S, Wu Y, Hazen SL, Tang WH. Prognostic comparison of different sensitivity cardiac troponin assays in stable heart failure. Am J Med. 2015;128(3):276–282. doi: 10.1016/j.amjmed.2014.09.029.
    1. Tang WH, Wu Y, Britt EB, Jr, Iqbal N, Hazen SL. Detectable subclinical myocardial necrosis is associated with cardiovascular risk in stable patients with diabetes. Diabetes Care. 2013;36(5):1126–1131. doi: 10.2337/dc11-1969.
    1. Rubin J, Matsushita K, Ballantyne CM, Hoogeveen R, Coresh J, Selvin E. Chronic hyperglycemia and subclinical myocardial injury. J Am Coll Cardiol. 2012;59(5):484–489. doi: 10.1016/j.jacc.2011.10.875.
    1. Stevens LA, Schmid CH, Greene T, Zhang Y, Beck GJ, Froissart M, et al. Comparative performance of the CKD epidemiology collaboration (CKD-EPI) and the modification of diet in renal disease (MDRD) study equations for estimating GFR levels above 60 mL/min/1.73 m2. Am J Kidney Dis. 2010;56(3):486–495. doi: 10.1053/j.ajkd.2010.03.026.
    1. Zhou Z, Sun B, Huang S, Zhu C, Bian M. Glycemic variability: adverse clinical outcomes and how to improve it? Cardiovasc Diabetol. 2020;19(1):102. doi: 10.1186/s12933-020-01085-6.
    1. Hartge MM, Unger T, Kintscher U. The endothelium and vascular inflammation in diabetes. Diabetes Vasc Dis Res. 2007;4(2):84–88. doi: 10.3132/dvdr.2007.025.
    1. Witkowski M, Tabaraie T, Steffens D, Friebel J, Dörner A, Skurk C, et al. MicroRNA-19a contributes to the epigenetic regulation of tissue factor in diabetes. Cardiovasc Diabetol. 2018;17(1):34. doi: 10.1186/s12933-018-0678-z.
    1. Paolisso P, Foà A, Bergamaschi L, Donati F, Fabrizio M, Chiti C, et al. Hyperglycemia, inflammatory response and infarct size in obstructive acute myocardial infarction and MINOCA. Cardiovasc Diabetol. 2021;20(1):33. doi: 10.1186/s12933-021-01222-9.
    1. Kakouros N, Rade JJ, Kourliouros A, Resar JR. Platelet function in patients with diabetes mellitus: from a theoretical to a practical perspective. Int J Endocrinol. 2011 doi: 10.1155/2011/742719.
    1. Schuette C, Steffens D, Witkowski M, Stellbaum C, Bobbert P, Schultheiss HP, et al. The effect of clopidogrel on platelet activity in patients with and without type-2 diabetes mellitus: a comparative study. Cardiovasc Diabetol. 2015;14:15. doi: 10.1186/s12933-015-0182-7.
    1. Kario K, Matsuo T, Kobayashi H, Matsuo M, Sakata T, Miyata T. Activation of tissue factor-induced coagulation and endothelial cell dysfunction in non-insulin-dependent diabetic patients with microalbuminuria. Arterioscler Thromb Vasc Biol. 1995;15(8):1114–1120. doi: 10.1161/01.ATV.15.8.1114.
    1. Witkowski M, Witkowski M, Saffarzadeh M, Friebel J, Tabaraie T, Ta Bao L, et al. Vascular miR-181b controls tissue factor-dependent thrombogenicity and inflammation in type 2 diabetes. Cardiovasc Diabetol. 2020;19(1):20. doi: 10.1186/s12933-020-0993-z.
    1. Witkowski M, Friebel J, Tabaraie T, Grabitz S, Dörner A, Taghipour L, et al. Metformin is associated with reduced tissue factor procoagulant activity in patients with poorly controlled diabetes. Cardiovasc Drugs Ther. 2021;35(4):809–813. doi: 10.1007/s10557-020-07040-7.
    1. Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ. 2016;355:i5953. doi: 10.1136/bmj.i5953.
    1. Tai ES, Goh SY, Lee JJ, Wong MS, Heng D, Hughes K, et al. Lowering the criterion for impaired fasting glucose: impact on disease prevalence and associated risk of diabetes and ischemic heart disease. Diabetes Care. 2004;27(7):1728–1734. doi: 10.2337/diacare.27.7.1728.
    1. Nguyen BM, Lin KW, Mishori R. Public health implications of overscreening for carotid artery stenosis, prediabetes, and thyroid cancer. Public Health Rev. 2018;39:18. doi: 10.1186/s40985-018-0095-6.
    1. Piller C. Dubious diagnosis. Science. 2019;363(6431):1026–1031. doi: 10.1126/science.363.6431.1026.
    1. Kwong RY, Sattar H, Wu H, Vorobiof G, Gandla V, Steel K, et al. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation. 2008;118(10):1011–1020. doi: 10.1161/CIRCULATIONAHA.107.727826.
    1. Ohyama Y, Volpe GJ, Lima JAC. Subclinical myocardial disease in heart failure detected by CMR. Curr Cardiovasc Imaging Rep. 2014;7:9269. doi: 10.1007/s12410-014-9269-x.
    1. Sinnaeve PR, Steg PG, Fox KA, Van de Werf F, Montalescot G, Granger CB, et al. Association of elevated fasting glucose with increased short-term and 6-month mortality in ST-segment elevation and non-ST-segment elevation acute coronary syndromes: the Global Registry of Acute Coronary Events. Arch Intern Med. 2009;169(4):402–409. doi: 10.1001/archinternmed.2008.572.
    1. Giraldez RR, Clare RM, Lopes RD, Dalby AJ, Prabhakaran D, Brogan GX, Jr, et al. Prevalence and clinical outcomes of undiagnosed diabetes mellitus and prediabetes among patients with high-risk non-ST-segment elevation acute coronary syndrome. Am Heart J. 2013;165(6):918–25.e2. doi: 10.1016/j.ahj.2013.01.005.
    1. Vistisen D, Witte DR, Brunner EJ, Kivimaki M, Tabak A, Jorgensen ME, et al. Risk of cardiovascular disease and death in individuals with prediabetes defined by different criteria: the Whitehall II study. Diabetes Care. 2018;41(4):899–906. doi: 10.2337/dc17-2530.
    1. Bartnik M, Malmberg K, Norhammar A, Tenerz A, Ohrvik J, Ryden L. Newly detected abnormal glucose tolerance: an important predictor of long-term outcome after myocardial infarction. Eur Heart J. 2004;25(22):1990–1997. doi: 10.1016/j.ehj.2004.09.021.
    1. Neumann JT, Twerenbold R, Ojeda F, Sorensen NA, Chapman AR, Shah ASV, et al. Application of high-sensitivity troponin in suspected myocardial infarction. N Engl J Med. 2019;380(26):2529–2540. doi: 10.1056/NEJMoa1803377.
    1. de Lemos JA, Drazner MH, Omland T, Ayers CR, Khera A, Rohatgi A, et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA. 2010;304(22):2503–2512. doi: 10.1001/jama.2010.1768.
    1. Kubo T, Kitaoka H, Okawa M, Yamanaka S, Hirota T, Baba Y, et al. Combined measurements of cardiac troponin I and brain natriuretic peptide are useful for predicting adverse outcomes in hypertrophic cardiomyopathy. Circ J. 2011;75(4):919–926. doi: 10.1253/circj.CJ-10-0782.
    1. Feng J, Schaus BJ, Fallavollita JA, Lee TC, Canty JM., Jr Preload induces troponin I degradation independently of myocardial ischemia. Circulation. 2001;103(16):2035–2037. doi: 10.1161/01.CIR.103.16.2035.
    1. Daniels LB, Laughlin GA, Clopton P, Maisel AS, Barrett-Connor E. Minimally elevated cardiac troponin T and elevated N-terminal pro-B-type natriuretic peptide predict mortality in older adults: results from the Rancho Bernardo study. J Am Coll Cardiol. 2008;52(6):450–459. doi: 10.1016/j.jacc.2008.04.033.
    1. Wallace TW, Abdullah SM, Drazner MH, Das SR, Khera A, McGuire DK, et al. Prevalence and determinants of troponin T elevation in the general population. Circulation. 2006;113(16):1958–1965. doi: 10.1161/CIRCULATIONAHA.105.609974.
    1. Lucci C, Cosentino N, Genovese S, Campodonico J, Milazzo V, De Metrio M, et al. Prognostic impact of admission high-sensitivity C-reactive protein in acute myocardial infarction patients with and without diabetes mellitus. Cardiovasc Diabetol. 2020;19(1):183. doi: 10.1186/s12933-020-01157-7.
    1. Sinha A, Ning H, Ahmad FS, Bancks MP, Carnethon MR, O'Brien MJ, et al. Association of fasting glucose with lifetime risk of incident heart failure: the Lifetime Risk Pooling Project. Cardiovasc Diabetol. 2021;20(1):66. doi: 10.1186/s12933-021-01265-y.
    1. Succurro E, Miceli S, Fiorentino TV, Sciacqua A, Perticone M, Andreozzi F, et al. Sex-specific differences in left ventricular mass and myocardial energetic efficiency in non-diabetic, pre-diabetic and newly diagnosed type 2 diabetic subjects. Cardiovasc Diabetol. 2021;20(1):60. doi: 10.1186/s12933-021-01248-z.
    1. Pandey A, Vaduganathan M, Patel KV, Ayers C, Ballantyne CM, Kosiborod MN, et al. Biomarker-based risk prediction of incident heart failure in pre-diabetes and diabetes. JACC Heart Fail. 2021;9(3):215–223. doi: 10.1016/j.jchf.2020.10.013.
    1. Gore MO, Seliger SL, Defilippi CR, Nambi V, Christenson RH, Hashim IA, et al. Age- and sex-dependent upper reference limits for the high-sensitivity cardiac troponin T assay. J Am Coll Cardiol. 2014;63(14):1441–1448. doi: 10.1016/j.jacc.2013.12.032.

Source: PubMed

3
Iratkozz fel