Specific Behaviors Predict Staphylococcus aureus Colonization and Skin and Soft Tissue Infections Among Human Immunodeficiency Virus-Infected Persons

Nancy F Crum-Cianflone, Xun Wang, Amy Weintrob, Tahaniyat Lalani, Mary Bavaro, Jason F Okulicz, Katrin Mende, Michael Ellis, Brian K Agan, Nancy F Crum-Cianflone, Xun Wang, Amy Weintrob, Tahaniyat Lalani, Mary Bavaro, Jason F Okulicz, Katrin Mende, Michael Ellis, Brian K Agan

Abstract

Background. Few data exist on the incidence and risk factors of Staphylococcus aureus colonization and skin and soft tissue infections (SSTIs) among patients infected with human immunodeficiency virus (HIV). Methods. Over a 2-year period, we prospectively evaluated adults infected with HIV for incident S aureus colonization at 5 body sites and SSTIs. Cox proportional hazard models using time-updated covariates were performed. Results. Three hundred twenty-two participants had a median age of 42 years (interquartile range, 32-49), an HIV duration of 9.4 years (2.7-17.4), and 58% were on highly active antiretroviral therapy (HAART). Overall, 102 patients (32%) became colonized with S aureus with an incidence rate of 20.6 (95% confidence interval [CI], 16.8-25.0) per 100 person-years [PYs]. Predictors of colonization in the final multivariable model included illicit drug use (hazard ratios [HR], 4.26; 95% CI, 1.33-13.69) and public gym use (HR 1.66, 95% CI, 1.04-2.66), whereas antibacterial soap use was protective (HR, 0.50; 95% CI, 0.32-0.78). In a separate model, perigenital colonization was associated with recent syphilis infection (HR, 4.63; 95% CI, 1.01-21.42). Fifteen percent of participants developed an SSTI (incidence rate of 9.4 cases [95% CI, 6.8-12.7] per 100 PYs). Risk factors for an SSTI included incident S aureus colonization (HR 2.52; 95% CI, 1.35-4.69), public shower use (HR, 2.59; 95% CI, 1.48-4.56), and hospitalization (HR 3.54; 95% CI, 1.67-7.53). The perigenital location for S aureus colonization was predictive of SSTIs. Human immunodeficiency virus-related factors (CD4 count, HIV RNA level, and HAART) were not associated with colonization or SSTIs. Conclusions. Specific behaviors, but not HIV-related factors, are predictors of colonization and SSTIs. Behavioral modifications may be the most important strategies in preventing S aureus colonization and SSTIs among persons infected with HIV.

Keywords: HIV; MRSA; Staphylococcus aureus; behaviors; colonization; human immunodeficiency virus; risk factors; skin and soft tissue infections.

Figures

Figure 1.
Figure 1.
Venn diagram of the overlap of incident Staphylococcus aureus colonization at various body sites. Each circle size is proportional to the number colonized at each anatomic site. Perigenital is groin and/or perirectal colonization. The axilla site was omitted for simplicity.

References

    1. Moran GJ, Krishnadasan A, Gorwitz RJ, et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 2006; 355:666–74.
    1. Shet A, Mathema B, Mediavilla JR, et al. Colonization and subsequent skin and soft tissue infection due to methicillin-resistant Staphylococcus aureus in a cohort of otherwise healthy adults infected with HIV type 1. J Infect Dis 2009; 200:88–93.
    1. Weinke T, Schiller R, Fehrenbach FJ, et al. Association between Staphylococcus aureus nasopharyngeal colonization and septicemia in patients infected with the human immunodeficiency virus. Eur J Clin Microbiol Infect Dis 1992; 11:985–9.
    1. Hidron AI, Kourbatova EV, Halvosa JS, et al. Risk factors for colonization with methicillin-resistant Staphylococcus aureus (MRSA) in patients admitted to an urban hospital: emergence of community-associated MRSA nasal carriage. Clin Infect Dis 2005; 41:159–66.
    1. Seybold U, Supthut-Schroder B, Draenert R, et al. Prevalence and risk factors of nasal colonization with Staphylococcus aureus - association with HIV infection in older patients. Scand J Infect Dis 2009; 41:63–6.
    1. Popovich KJ, Weinstein RA, Aroutcheva A, et al. Community-associated methicillin-resistant Staphylococcus aureus and HIV: intersecting epidemics. Clin Infect Dis 2010; 50:979–87.
    1. Popovich KJ, Hota B, Aroutcheva A, et al. Community-associated methicillin-resistant Staphylococcus aureus colonization burden in HIV-infected patients. Clin Infect Dis 2013; 56:1067–74.
    1. Crum-Cianflone NF, Burgi A, Hale BR. Increasing rates of community-acquired MRSA infections among HIV-infected persons. Int J STD AIDS 2007; 18:521–6.
    1. Shadyab AH, Crum-Cianflone NF. Methicillin-resistant Staphylococcus aureus (MRSA) infections among HIV-infected persons in the era of highly active antiretroviral therapy: a review of the literature. HIV Med 2012; 13:319–32.
    1. Kluytmans J, van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 1997; 10:505–20.
    1. Nguyen MH, Kauffman CA, Goodman RP, et al. Nasal carriage of and infection with Staphylococcus aureus in HIV-infected patients. Ann Intern Med 1999; 130:221–5.
    1. Onorato M, Borucki MJ, Baillargeon G, et al. Risk factors for colonization or infection due to methicillin-resistant Staphylococcus aureus in HIV-positive patients: a retrospective case-control study. Infect Control Hosp Epidemiol 1999; 20:26–30.
    1. Villacian JS, Barkham T, Earnest A, et al. Prevalence of and risk factors for nasal colonization with Staphylococcus aureus among human immunodeficiency virus-positive outpatients in Singapore. Infect Control Hosp Epidemiol 2004; 25:438–40.
    1. Holbrook KA, Klein RS, Hartel D, et al. Staphylococcus aureus nasal colonization in HIV-seropositive and HIV-seronegative drug users. J Acquir Immune Defic Syndr Hum Retrovirol 1997; 16:301–6.
    1. McDonald LC, Lauderdale TL, Lo HJ, et al. Colonization of HIV-infected outpatients in Taiwan with methicillin-resistant and methicillin-sensitive Staphylococcus aureus. Int J STD AIDS 2003; 14:473–7.
    1. Crum-Cianflone NF, Shadyab AH, Weintrob A, et al. Association of methicillin-resistant Staphylococcus aureus (MRSA) colonization with high-risk sexual behaviors in persons infected with human immunodeficiency virus (HIV). Medicine (Baltimore) 2011; 90:379–89.
    1. Chacko J, Kuruvila M, Bhat GK. Factors affecting the nasal carriage of methicillin-resistant Staphylococcus aureus in human immunodeficiency virus-infected patients. Indian J Med Microbiol 2009; 27:146–8.
    1. Sissolak D, Geusau A, Heinze G, et al. Risk factors for nasal carriage of Staphylococcus aureus in infectious disease patients, including patients infected with HIV, and molecular typing of colonizing strains. Eur J Clin Microbiol Infect Dis 2002; 21:88–96.
    1. Szumowski JD, Wener KM, Gold HS, et al. Methicillin-resistant Staphylococcus aureus colonization, behavioral risk factors, and skin and soft-tissue infection at an ambulatory clinic serving a large population of HIV-infected men who have sex with men. Clin Infect Dis 2009; 49:118–21.
    1. Cenizal MJ, Hardy RD, Anderson M, et al. Prevalence of and risk factors for methicillin-resistant Staphylococcus aureus (MRSA) nasal colonization in HIV-infected ambulatory patients. J Acquir Immune Defic Syndr 2008; 48:567–71.
    1. Ramsetty SK, Stuart LL, Blake RT, et al. Risks for methicillin-resistant Staphylococcus aureus colonization or infection among patients with HIV infection. HIV Med 2010; 11:389–94.
    1. Zervou FN, Zacharioudakis IM, Ziakas PD, et al. Prevalence of and risk factors for methicillin-resistant Staphylococcus aureus colonization in HIV infection: a meta-analysis. Clin Infect Dis 2014; 59:1302–11.
    1. Ellis MW, Hospenthal DR, Dooley DP, et al. Natural history of community-acquired methicillin-resistant Staphylococcus aureus colonization and infection in soldiers. Clin Infect Dis 2004; 39:971–9.
    1. Peters PJ, Brooks JT, McAllister SK, et al. Methicillin-resistant Staphylococcus aureus colonization of the groin and risk for clinical infection among HIV-infected adults. Emerg Infect Dis 2013; 19:623–9.
    1. von Eiff C, Becker K, Machka K, et al. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med 2001; 344:11–6.
    1. Weintrob A, Bebu I, Johnson E, et al. Randomized, double-blinded study on decolonization procedures for methicillin-resistant Staphylococcus aureus (MRSA) among HIV-infected adults. In: Infectious Disease Society of America Meeting/IDWeek, San Francisco, CA: October 2–5, 2013.
    1. Peters PJ, Brooks JT, Limbago B, et al. Methicillin-resistant Staphylococcus aureus colonization in HIV-infected outpatients is common and detection is enhanced by groin culture. Epidemiol Infect 2011; 139:998–1008.
    1. Yang ES, Tan J, Eells S, et al. Body site colonization in patients with community-associated methicillin-resistant Staphylococcus aureus and other types of S. aureus skin infections. Clin Microbiol Infect 2010; 16:425–31.
    1. Wertheim HF, Verveer J, Boelens HA, et al. Effect of mupirocin treatment on nasal, pharyngeal, and perineal carriage of Staphylococcus aureus in healthy adults. Antimicrob Agents Chemother 2005; 49:1465–7.
    1. Miller LG, Eells SJ, Taylor AR, et al. Staphylococcus aureus colonization among household contacts of patients with skin infections: risk factors, strain discordance, and complex ecology. Clin Infect Dis 2012; 54:1523–35.
    1. Brown DF, Edwards DI, Hawkey PM, et al. Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). J Antimicrob Chemother 2005; 56:1000–18.
    1. Miller M, Cespedes C, Bhat M, et al. Incidence and persistence of Staphylococcus aureus nasal colonization in a community sample of HIV-infected and -uninfected drug users. Clin Infect Dis 2007; 45:343–6.
    1. Maree CL, Eells SJ, Tan J, et al. Risk factors for infection and colonization with community-associated methicillin-resistant Staphylococcus aureus in the Los Angeles County jail: a case-control study. Clin Infect Dis 2010; 51:1248–57.
    1. Giuliani M, Longo B, Latini A, et al. No evidence of colonization with community-acquired methicillin-resistant Staphylococcus aureus in HIV-1-infected men who have sex with men. Epidemiol Infect 2010; 138:738–42.
    1. Hidron AI, Moanna A, Rimland D. The rise and fall of MRSA infections in HIV patients. AIDS 2011; 25:1001–3.
    1. Madariaga MG, Ullrich F, Swindells S. Low prevalence of community-acquired methicillin-resistant Staphylococcus aureus colonization and apparent lack of correlation with sexual behavior among HIV-infected patients in Nebraska. Clin Infect Dis 2009; 48:1485–7.
    1. Kallen AJ, Mu Y, Bulens S, et al. Health care-associated invasive MRSA infections, 2005–2008. JAMA 2010; 304:641–8.
    1. Ray GT, Suaya JA, Baxter R. Incidence, microbiology, and patient characteristics of skin and soft-tissue infections in a U.S. population: a retrospective population-based study. BMC Infect Dis 2013; 13:252.
    1. Hersh AL, Chambers HF, Maselli JH, et al. National trends in ambulatory visits and antibiotic prescribing for skin and soft-tissue infections. Arch Intern Med 2008; 168:1585–91.
    1. Wertheim HF, Melles DC, Vos MC, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 2005; 5:751–62.
    1. Brodine SK, Shaffer RA, Starkey MJ, et al. Drug resistance patterns, genetic subtypes, clinical features, and risk factors in military personnel with HIV-1 seroconversion. Ann Intern Med 1999; 131:502–6.

Source: PubMed

3
Iratkozz fel