Combined high dose radiation and pazopanib in metastatic renal cell carcinoma: a phase I dose escalation trial

Katrien De Wolf, Sylvie Rottey, Karim Vermaelen, Karel Decaestecker, Nora Sundahl, Lizzy De Lobel, Els Goetghebeur, Gert De Meerleer, Nicolaas Lumen, Valérie Fonteyne, Daan De Maeseneer, Piet Ost, Katrien De Wolf, Sylvie Rottey, Karim Vermaelen, Karel Decaestecker, Nora Sundahl, Lizzy De Lobel, Els Goetghebeur, Gert De Meerleer, Nicolaas Lumen, Valérie Fonteyne, Daan De Maeseneer, Piet Ost

Abstract

Background: The primary objective was to determine maximum tolerated radiation dose in patients with metastatic renal cell carcinoma on pazopanib treatment.

Methods: Treatment-naïve patients received pazopanib according to standard of care. Stereotactic body radiotherapy (SBRT) was delivered concurrently to the largest metastatic lesion at day 8, 10 and 12. SBRT doses were escalated in 3 dose levels (24 Gy/3, 30 Gy/3 and 36 Gy/3). Dose level was assigned using Time-to-Event Continual Reassessment Method with the target dose-limiting toxicity rate set to 0.25.

Results: Thirteen patients were included. One patient experienced dose limiting toxicity (DLT) at dose level 3 (grade 4 hypoglycemia). Maximum tolerated dose was not reached with a recommended dose of 36 Gy/3 having a probability of DLT of 11%. One-year local control was 83% (95% confidence interval 61-100) and 1-year progression-free survival was 28% (95% confidence interval 1-55).

Conclusions: SBRT in combination with pazopanib is well tolerated with good local control and response rates outside the radiation field.

Trial registration: This trial was retrospectively registered on clinicaltrials.gov( NCT02334709 ) on January 6th, 2015.

Keywords: Immune monitoring; Renal cell carcinoma; Stereotactic body radiotherapy; Tyrosine kinase inhibitors.

Conflict of interest statement

Ethics approval and consent to participate

This trial was approved by the Ethics committee of the Ghent University Hospital (EC2013/1087) and is registered on Participants were at all times fully informed about the trial process and purposes, and gave consent to their participation in the trial.

Consent for publication

Not applicable.

Competing interests

Financial support for the present study was provided by Novartis.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Local control of irradiated lesions and distant control of non-irradiated lesions. a: Greatest percentage change in irradiated tumor volume. Complete response, partial response, stable disease and disease progression were assessed as per RECIST 1.1 or as per MDA criteria for bone lesions. Two patients did not have any change in irradiated tumor volume. b: Greatest percentage change in tumor volume of non-irradiated target lesions. Complete response, partial response, stable disease or disease progression were assessed as per RECIST 1.1 or as per MDA criteria for bone lesions. Three patients did not have any change in non-irradiated target lesions, one patient had a decrease in non-irradiated tumor burden yet had progressive disease due to a new lesion (this is not added to the tumor burden calculation as per RECIST 1.1)
Fig. 2
Fig. 2
Frequency of CD8+ and CD4+ lymphocytes during treatment. a: Boxplot comparing the frequency of CD8+ lymphocytes at baseline, before start of SBRT and at the first evaluation visit. b: Boxplot comparing the frequency of CD4+ lymphocytes at baseline, before start of SBRT and at the first evaluation visit
Fig. 3
Fig. 3
Frequency of cells before the start of SBRT between good and bad responders. a Frequency of Memory Th17 cells, Naive Th17 cells and CD8+ lymphocytes before the start of SBRT in 1 bad responding study patient compared to 1 good responding study patient. b Boxplot comparing the frequency of Memory Th17 cells, Naive Th17 cells and CD8+ lymphocytes before start of SBRT between bad responding and good responding patients

References

    1. Audenet F, Yates DR, Cancel-Tassin G, Cussenot O, Roupret M. Genetic pathways involved in carcinogenesis of clear cell renal cell carcinoma: genomics towards personalized medicine. BJU Int. 2012;109:1864–1870. doi: 10.1111/j.1464-410X.2011.10661.x.
    1. Swanson DA. Surgery for metastases of renal cell carcinoma. Scand J Surg. 2004;93:150–155. doi: 10.1177/145749690409300211.
    1. Ljungberg B, Cowan NC, Hanbury DC, Hora M, Kuczyk MA, Merseburger AS, Patard JJ, Mulders PF, Sinescu IC. European Association of Urology Guideline G: EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol. 2010;58:398–406. doi: 10.1016/j.eururo.2010.06.032.
    1. Coppin C, Le L, Porzsolt F, Wilt T. Targeted therapy for advanced renal cell carcinoma. Cochrane Database Syst Rev. 2008:CD006017.
    1. Iacovelli R, Alesini D, Palazzo A, Trenta P, Santoni M, De Marchis L, Cascinu S, Naso G, Cortesi E. Targeted therapies and complete responses in first line treatment of metastatic renal cell carcinoma. A meta-analysis of published trials. Cancer Treat Rev. 2014;40:271–275. doi: 10.1016/j.ctrv.2013.09.003.
    1. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med. 2015;373:1803–1813. doi: 10.1056/NEJMoa1510665.
    1. De Wolf K, Vermaelen K, De Meerleer G, Lambrecht BN, Ost P. The potential of radiotherapy to enhance the efficacy of renal cell carcinoma therapy. Oncoimmunology. 2015;4:e1042198. doi: 10.1080/2162402X.2015.1042198.
    1. Motzer RJ, Hutson TE, Cella D, Reeves J, Hawkins R, Guo J, Nathan P, Staehler M, de Souza P, Merchan JR, et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med. 2013;369:722–731. doi: 10.1056/NEJMoa1303989.
    1. Tree AC, Khoo VS, Eeles RA, Ahmed M, Dearnaley DP, Hawkins MA, Huddart RA, Nutting CM, Ostler PJ, van As NJ. Stereotactic body radiotherapy for oligometastases. Lancet Oncol. 2013;14:e28–e37. doi: 10.1016/S1470-2045(12)70510-7.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45:228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Costelloe CM, Chuang HH, Madewell JE, Ueno NT. Cancer Response Criteria and Bone Metastases: RECIST 1.1, MDA and PERCIST. J Cancer. 2010;1:80–92. doi: 10.7150/jca.1.80.
    1. Salama JK, Hasselle MD, Chmura SJ, Malik R, Mehta N, Yenice KM, Villaflor VM, Stadler WM, Hoffman PC, Cohen EE, et al. Stereotactic body radiotherapy for multisite extracranial oligometastases: final report of a dose escalation trial in patients with 1 to 5 sites of metastatic disease. Cancer. 2012;118:2962–2970. doi: 10.1002/cncr.26611.
    1. Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, Keall P, Lovelock M, Meeks S, Papiez L, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010;37:4078–4101. doi: 10.1118/1.3438081.
    1. Cheung YK, Chappell R. Sequential designs for phase I clinical trials with late-onset toxicities. Biometrics. 2000;56:1177–1182. doi: 10.1111/j.0006-341X.2000.01177.x.
    1. De Meerleer G, Khoo V, Escudier B, Joniau S, Bossi A, Ost P, Briganti A, Fonteyne V, Van Vulpen M, Lumen N, et al. Radiotherapy for renal-cell carcinoma. Lancet Oncol. 2014;15:e170–e177. doi: 10.1016/S1470-2045(13)70569-2.
    1. Miller JA, Balagamwala EH, Angelov L, Suh JH, Rini B, Garcia JA, Ahluwalia M, Chao ST. Spine stereotactic radiosurgery with concurrent tyrosine kinase inhibitors for metastatic renal cell carcinoma. J Neurosurg Spine. 2016;25:766–774. doi: 10.3171/2016.4.SPINE16229.
    1. Ranck MC, Golden DW, Corbin KS, Hasselle MD, Liauw SL, Stadler WM, Hahn OM, Weichselbaum RR, Salama JK. Stereotactic body radiotherapy for the treatment of oligometastatic renal cell carcinoma. Am J Clin Oncol. 2013;36:589–595. doi: 10.1097/COC.0b013e31825d52b2.
    1. Altoos B, Amini A, Yacoub M, Bourlon MT, Kessler EE, Flaig TW, Fisher CM, Kavanagh BD, Lam ET, Karam SD. Local Control Rates of Metastatic Renal Cell Carcinoma (RCC) to Thoracic, Abdominal, and Soft Tissue Lesions Using Stereotactic Body Radiotherapy (SBRT) Radiat Oncol. 2015;10:218. doi: 10.1186/s13014-015-0528-z.
    1. Svedman C, Sandstrom P, Pisa P, Blomgren H, Lax I, Kalkner KM, Nilsson S, Wersall P. A prospective Phase II trial of using extracranial stereotactic radiotherapy in primary and metastatic renal cell carcinoma. Acta Oncol. 2006;45:870–875. doi: 10.1080/02841860600954875.
    1. Ghia AJ, Chang EL, Bishop AJ, Pan HY, Boehling NS, Amini B, Allen PK, Li J, Rhines LD, Tannir NM, et al. Single-fraction versus multifraction spinal stereotactic radiosurgery for spinal metastases from renal cell carcinoma: secondary analysis of Phase I/II trials. J Neurosurg Spine. 2016;24:829–836. doi: 10.3171/2015.8.SPINE15844.
    1. Ponsky L, Lo SS, Zhang Y, Schluchter M, Liu Y, Patel R, Abouassaly R, Welford S, Gulani V, Haaga JR, et al. Phase I dose-escalation study of stereotactic body radiotherapy (SBRT) for poor surgical candidates with localized renal cell carcinoma. Radiother Oncol. 2015;117:183–187. doi: 10.1016/j.radonc.2015.08.030.
    1. Kothari G, Foroudi F, Gill S, Corcoran NM, Siva S. Outcomes of stereotactic radiotherapy for cranial and extracranial metastatic renal cell carcinoma: a systematic review. Acta Oncol. 2015;54:148–157. doi: 10.3109/0284186X.2014.939298.
    1. Porta C, Paglino C, Imarisio I, Ganini C, Pedrazzoli P. Immunological effects of multikinase inhibitors for kidney cancer: a clue for integration with cellular therapies? J Cancer. 2011;2:333–338. doi: 10.7150/jca.2.333.
    1. Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H. Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res. 2009;69:2506–2513. doi: 10.1158/0008-5472.CAN-08-4323.
    1. Goyal S, Shah S, Khan AJ, Danish H, Haffty BG. Evaluation of acute locoregional toxicity in patients with breast cancer treated with adjuvant radiotherapy in combination with pazopanib. ISRN Oncol. 2012;2012:896202.
    1. Haas RL, Gelderblom H, Sleijfer S, van Boven HH, Scholten A, Dewit L, Borst G, van der Hage J, Kerst JM, Nout RA, et al. A phase I study on the combination of neoadjuvant radiotherapy plus pazopanib in patients with locally advanced soft tissue sarcoma of the extremities. Acta Oncol. 2015;54:1195–1201. doi: 10.3109/0284186X.2015.1037404.
    1. Barney BM, Markovic SN, Laack NN, Miller RC, Sarkaria JN, Macdonald OK, Bauer HJ, Olivier KR. Increased bowel toxicity in patients treated with a vascular endothelial growth factor inhibitor (VEGFI) after stereotactic body radiation therapy (SBRT) Int J Radiat Oncol Biol Phys. 2013;87:73–80. doi: 10.1016/j.ijrobp.2013.05.012.
    1. Punt S, Fleuren GJ, Kritikou E, Lubberts E, Trimbos JB, Jordanova ES, Gorter A. Angels and demons: Th17 cells represent a beneficial response, while neutrophil IL-17 is associated with poor prognosis in squamous cervical cancer. Oncoimmunology. 2015;4:e984539. doi: 10.4161/2162402X.2014.984539.
    1. Sfanos KS, Bruno TC, Maris CH, Xu L, Thoburn CJ, DeMarzo AM, Meeker AK, Isaacs WB, Drake CG. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin Cancer Res. 2008;14:3254–3261. doi: 10.1158/1078-0432.CCR-07-5164.
    1. von Euw E, Chodon T, Attar N, Jalil J, Koya RC, Comin-Anduix B, Ribas A. CTLA4 blockade increases Th17 cells in patients with metastatic melanoma. J Transl Med. 2009;7:35. doi: 10.1186/1479-5876-7-35.
    1. Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, Wu C, Kleinewietfeld M, Kunder S, Hafler DA, et al. Induction and molecular signature of pathogenic TH17 cells. Nat Immunol. 2012;13:991–999. doi: 10.1038/ni.2416.
    1. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342:971–976. doi: 10.1126/science.1240537.
    1. Zou W, Restifo NP. T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol. 2010;10:248–256. doi: 10.1038/nri2742.

Source: PubMed

3
Iratkozz fel