A Novel Operative Procedure for Pelvic Organ Prolapse Utilizing a MRI-Visible Mesh Implant: Safety and Outcome of Modified Laparoscopic Bilateral Sacropexy

Ralf Joukhadar, Gabriele Meyberg-Solomayer, Amr Hamza, Julia Radosa, Werner Bader, Dimitri Barski, Fakher Ismaeel, Guenther Schneider, Erich Solomayer, Sascha Baum, Ralf Joukhadar, Gabriele Meyberg-Solomayer, Amr Hamza, Julia Radosa, Werner Bader, Dimitri Barski, Fakher Ismaeel, Guenther Schneider, Erich Solomayer, Sascha Baum

Abstract

Introduction: Sacropexy is a generally applied treatment of prolapse, yet there are known possible complications of it. An essential need exists for better alloplastic materials.

Methods: Between April 2013 and June 2014, we performed a modified laparoscopic bilateral sacropexy (MLBS) in 10 patients using a MRI-visible PVDF mesh implant. Selected patients had prolapse POP-Q stages II-III and concomitant OAB. We studied surgery-related morbidity, anatomical and functional outcome, and mesh-visibility in MRI. Mean follow-up was 7.4 months.

Results: Concomitant colporrhaphy was conducted in 1/10 patients. Anatomical success was defined as POP-Q stage 0-I. Apical success rate was 100% and remained stable. A recurrent cystocele was seen in 1/10 patients during follow-up without need for intervention. Out of 6 (6/10) patients with preoperative SUI, 5/6 were healed and 1/6 persisted. De-novo SUI was seen in 1/10 patients. Complications requiring a relaparoscopy were seen in 2/10 patients. 8/10 patients with OAB were relieved postoperatively. The first in-human magnetic resonance visualization of a prolapse mesh implant was performed and showed good quality of visualization.

Conclusion: MLBS is a feasible and safe procedure with favorable anatomical and functional outcome and good concomitant healing rates of SUI and OAB. Prospective data and larger samples are required.

Figures

Figure 1
Figure 1
Figure 2
Figure 2
Figure 3
Figure 3
Figure 4
Figure 4
Figure 5
Figure 5
Correction of prolapse in each compartment. The dots correlate to the mean measurements of Aa, Ba, C, D, Ap, and Bp. Red line: lines out the preoperative status (POP-Q measurements). Green line: lines out the postoperative status (POP-Q measurements) before discharge.
Figure 6
Figure 6
Coronal subvolume minimum intensity projection of a T2-weighted dataset, displaying the implant with a low signal intensity (arrows), comparable to the signal of muscle tissue.
Figure 7
Figure 7
Same patient as in Figure 6, this time a T1-weighted dataset, again with a coronal subvolume minimum intensity projection. Using the T1-weighted images, the contrast between the implant and the surrounding tissue is even better. Due to the iron oxide particles, a signal loss in the area of the implant is obvious (arrows), which allows for exact identification of the implant.

References

    1. Skoczylas L. C., Turner L. C., Wang L., Winger D. G., Shepherd J. P. Changes in prolapse surgery trends relative to FDA notifications regarding vaginal mesh. International Urogynecology Journal. 2013;25(4):471–477. doi: 10.1007/s00192-013-2231-7.
    1. Myers E., Geller E., Crane A., Robinson B., Matthews C. Estimating the early impact of the fda safety communication on the use of surgical mesh. Southern Medical Journal. 2013;106(12):684–688. doi: 10.1097/SMJ.0000000000000031.
    1. Clemons J. L., Weinstein M., Guess M. K., et al. Impact of the 2011 FDA transvaginal mesh safety update on AUGS members' use of synthetic mesh and biologic grafts in pelvic reconstructive surgery. Female Pelvic Medicine and Reconstructive Surgery. 2013;19(4):191–198. doi: 10.1097/SPV.0b013e31829099c1.
    1. Coolen A.-L. W. M., van Oudheusden A. M. J., van Eijndhoven H. W. F., et al. A comparison of complications between open abdominal sacrocolpopexy and laparoscopic sacrocolpopexy for the treatment of vault prolapse. Obstetrics and Gynecology International. 2013;2013:7. doi: 10.1155/2013/528636.528636
    1. Nosti P. A., Andy U. U., Kane S., et al. Outcomes of abdominal and minimally invasive sacrocolpopexy: a retrospective cohort study. Female Pelvic Medicine and Reconstructive Surgery. 2014;20(1):33–37. doi: 10.1097/SPV.0000000000000036.
    1. Maher C. M., Feiner B., Baessler K., Glazener C. M. A. Surgical management of pelvic organ prolapse in women: the updated summary version Cochrane review. International Urogynecology Journal and Pelvic Floor Dysfunction. 2011;22(11):1445–1457. doi: 10.1007/s00192-011-1542-9.
    1. Bradley C. S., Kennedy C. M., Nygaard I. E. Pelvic floor symptoms and lifestyle factors in older women. Journal of Women's Health. 2005;14(2):128–136. doi: 10.1089/jwh.2005.14.128.
    1. Higgs P. J., Chua H.-L., Smith A. R. Long term review of laparoscopic sacrocolpopexy. BJOG. 2005;112(8):1134–1138. doi: 10.1111/j.1471-0528.2005.00646.x.
    1. LeClaire E. L., Mukati M. S., Juarez D., White D., Quiroz L. H. Is de novo stress incontinence after sacrocolpopexy related to anatomical changes and surgical approach? International Urogynecology Journal. 2014;25(9):1201–1206. doi: 10.1007/s00192-014-2366-1.
    1. Cosma S., Menato G., Ceccaroni M., et al. Laparoscopic sacropexy and obstructed defecation syndrome: an anatomoclinical study. International Urogynecology Journal and Pelvic Floor Dysfunction. 2013;24(10):1623–1630. doi: 10.1007/s00192-013-2077-z.
    1. Rice N. T., Hu Y., Slaughter J. C., Ward R. M. Pelvic mesh complications in women before and after the 2011 FDA public health notification. Female Pelvic Medicine and Reconstructive Surgery. 2013;19(6):333–338. doi: 10.1097/SPV.0b013e3182a330c1.
    1. Williams S. F., Rizk S., Martin D. P. Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration. Biomedizinische Technik. 2013;58(5):439–452. doi: 10.1515/bmt-2013-0009.
    1. Klink C. D., Junge K., Binnebösel M., et al. Comparison of long-term biocompability of PVDF and PP meshes. Journal of Investigative Surgery. 2011;24(6):292–299. doi: 10.3109/08941939.2011.589883.
    1. Krämer N. A., Donker H. C. W., Otto J., et al. A Concept for magnetic resonance visualization of surgical textile implants. Investigative Radiology. 2010;45(8):477–483. doi: 10.1097/RLI.0b013e3181e53e38.
    1. Clavien P. A., Barkun J., de Oliveira M. L., et al. The Clavien-Dindo classification of surgical complications: five-year experience. Annals of Surgery. 2009;250(2):187–196. doi: 10.1097/SLA.0b013e3181b13ca2.
    1. Mitropoulos D., Artibani W., Graefen M., Remzi M., Rouprêt M., Truss M. Reporting and grading of complications after urologic surgical procedures: an ad hoc EAU guidelines panel assessment and recommendations. European Urology. 2012;61(2):341–349. doi: 10.1016/j.eururo.2011.10.033.
    1. Ramanah R., Berger M. B., Parratte B. M., de Lancey J. O. L. Anatomy and histology of apical support: a literature review concerning cardinal and uterosacral ligaments. International Urogynecology Journal. 2012;23(11):1483–1494. doi: 10.1007/s00192-012-1819-7.
    1. Chen L., Ramanah R., Hsu Y., Ashton-Miller J. A., Delancey J. O. L. Cardinal and deep uterosacral ligament lines of action: MRI based 3D technique development and preliminary findings in normal women. International Urogynecology Journal. 2013;24(1):37–45. doi: 10.1007/s00192-012-1801-4.
    1. Buller J. L., Thompson J. R., Cundiff G. W., Sullivan L. K., Schön Ybarra M. A., Bent A. E. Uterosacral ligament: description of anatomic relationships to optimize surgical safety. Obstetrics and Gynecology. 2001;97(6):873–879. doi: 10.1016/S0029-7844(01)01346-1.
    1. Wieslander C. K., Roshanravan S. M., Wai C. Y., Schaffer J. I., Corton M. M. Uterosacral ligament suspension sutures: anatomic relationships in unembalmed female cadavers. American Journal of Obstetrics & Gynecology. 2007;197(6):672.e1–672.e6. doi: 10.1016/j.ajog.2007.08.065.
    1. Jäger W., Mirenska O., Brügge S. Surgical treatment of mixed and urge urinary incontinence in women. Gynecologic and Obstetric Investigation. 2012;74(2):157–164. doi: 10.1159/000339972.
    1. Klink C. D., Junge K., Binnebösel M., et al. Comparison of long-term biocompability of PVDF and PP meshes. Journal of Investigative Surgery. 2011;24(6):292–299. doi: 10.3109/08941939.2011.589883.
    1. Otto J., Kaldenhoff E., Kirschner-Hermanns R., Mühl T., Klinge U. Elongation of textile pelvic floor implants under load is related to complete loss of effective porosity, thereby favoring incorporation in scar plates. Journal of Biomedical Materials Research A. 2014;102(4):1079–1084. doi: 10.1002/jbm.a.34767.
    1. Berger D., Bientzle M. Polyvinylidene fluoride: a suitable mesh material for laparoscopic incisional and parastomal hernia repair! A prospective, observational study with 344 patients. Hernia. 2009;13(2):167–172. doi: 10.1007/s10029-008-0435-4.
    1. Noé K. G. I., Spüntrup C., Anapolski M. Laparoscopic pectopexy: a randomised comparative clinical trial of standard laparoscopic sacral colpo-cervicopexy to the new laparoscopic pectopexy. Short-term postoperative results. Archives of Gynecology and Obstetrics. 2013;287(2):275–280. doi: 10.1007/s00404-012-2536-7.
    1. Hansen N. L., Barabasch A., Distelmaier M., et al. First in-human magnetic resonance visualization of surgical mesh implants for inguinal hernia treatment. Investigative Radiology. 2013;48(11):770–778. doi: 10.1097/RLI.0b013e31829806ce.

Source: PubMed

3
Iratkozz fel