The effects of an extensive exercise programme on the progression of Mild Cognitive Impairment (MCI): study protocol for a randomised controlled trial

Kate E Devenney, Marit L Sanders, Brian Lawlor, Marcel G M Olde Rikkert, Stefan Schneider, NeuroExercise Study Group, Justine A Aaronson, Vera Abeln, Jurgen A H R Classen, Robert F Coen, Emer M Guinan, Damien Ferguson, Roy P C Kessels, Romain Meeusen, Christian Montag, Ross T Murphy, M Cristina Polidori, Martin Reuter, Heiko K Strüder, Dick H J Thijssen, Tobias Vogt, Cathal Walsh, Bernd Weber, Jennifer Hoblyn, Andrew Eustace, Cora McGreevy, Aisling Denihan, Justin Kinsella, Declan Lyons, Sean Kennelly, Kate E Devenney, Marit L Sanders, Brian Lawlor, Marcel G M Olde Rikkert, Stefan Schneider, NeuroExercise Study Group, Justine A Aaronson, Vera Abeln, Jurgen A H R Classen, Robert F Coen, Emer M Guinan, Damien Ferguson, Roy P C Kessels, Romain Meeusen, Christian Montag, Ross T Murphy, M Cristina Polidori, Martin Reuter, Heiko K Strüder, Dick H J Thijssen, Tobias Vogt, Cathal Walsh, Bernd Weber, Jennifer Hoblyn, Andrew Eustace, Cora McGreevy, Aisling Denihan, Justin Kinsella, Declan Lyons, Sean Kennelly

Abstract

Background: Exercise interventions to prevent dementia and delay cognitive decline have gained considerable attention in recent years. Human and animal studies have demonstrated that regular physical activity targets brain function by increasing cognitive reserve. There is also evidence of structural changes caused by exercise in preventing or delaying the genesis of neurodegeneration. Although initial studies indicate enhanced cognitive performance in patients with mild cognitive impairment (MCI) following an exercise intervention, little is known about the effect of an extensive, controlled and regular exercise regimen on the neuropathology of patients with MCI. This study aims to determine the effects of an extensive exercise programme on the progression of MCI.

Methods/design: This randomised controlled clinical intervention study will take place across three European sites. Seventy-five previously sedentary patients with a clinical diagnosis of MCI will be recruited at each site. Participants will be randomised to one of three groups. One group will receive a standardised 1-year extensive aerobic exercise intervention (3 units of 45 min/week). The second group will complete stretching and toning (non-aerobic) exercise (3 units of 45 min/week) and the third group will act as the control group. Change in all outcomes will be measured at baseline (T0), after six months (T1) and after 12 months (T2). The primary outcome, cognitive performance, will be determined by a neuropsychological test battery (CogState battery, Trail Making Test and Verbal fluency). Secondary outcomes include Montreal Cognitive Assessment (MoCA), cardiovascular fitness, physical activity, structural changes of the brain, quality of life measures and measures of frailty. Furthermore, outcome variables will be related to genetic variations on genes related to neurogenesis and epigenetic changes in these genes caused by the exercise intervention programme.

Discussion: The results will add new insights into the prevailing notion that exercise may slow the rate of cognitive decline in MCI.

Trial registration: ClinicalTrials.gov NCT02913053.

Keywords: Brain structure; Cognitive function; Epigenetics; Exercise intervention; Frailty; Mild cognitive impairment; Physical activity.

Figures

Fig. 1
Fig. 1
Participant flow through study

References

    1. Wimo A, Jönsson L, Gustavsson A, McDaid D, Ersek K, Georges J, Gulacsi L, Karpati K, Kenigsberg P, Valtonen H. The economic impact of dementia in Europe in 2008—cost estimates from the Eurocode project. Int J Geriatr Psychiatry. 2011;26:825–832. doi: 10.1002/gps.2610.
    1. Kirton J. A summit of significant success: prospects for the G8 leaders at lough erne. G8 Res Group. 2013;12:2013.
    1. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:270–279. doi: 10.1016/j.jalz.2011.03.008.
    1. Dubois B, Feldman HH, Jacova C, Cummings JL, DeKosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D. Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurol. 2010;9:1118–1127. doi: 10.1016/S1474-4422(10)70223-4.
    1. Pieramico V, Esposito R, Cesinaro S, Frazzini V, Sensi SL. Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals. Front Syst Neurosc. 2014;8:153.
    1. Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, Bäckman L, Hänninen T, Jula A, Laatikainen T. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385:2255–2263. doi: 10.1016/S0140-6736(15)60461-5.
    1. Geda YE, Roberts RO, Knopman DS, Christianson TJ, Pankratz VS, Ivnik RJ, Boeve BF, Tangalos EG, Petersen RC, Rocca WA. Physical exercise, aging, and mild cognitive impairment: a population-based study. Arch Neurol. 2010;67:80–86.
    1. Heyn P, Abreu BC, Ottenbacher KJ. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil. 2004;85:1694–1704. doi: 10.1016/j.apmr.2004.03.019.
    1. Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, Plymate SR, Fishel MA, Watson GS, Cholerton BA. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67:71–79.
    1. Nagamatsu LS, Chan A, Davis JC, Beattie BL, Graf P, Voss MW, Sharma D, Liu-Ambrose T. Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial. J Aging Res. 2013;2013:861893. doi: 10.1155/2013/861893.
    1. Nascimento CMC, Pereira JR, Pires de Andrade L, Garuffi M, Ayan C, Kerr DS, Talib LL, Cominetti MR, Stella F. Physical exercise improves peripheral BDNF levels and cognitive functions in mild cognitive impairment elderly with different bdnf Val66Met genotypes. J Alzheimer Dis. 2015;43:81–91.
    1. Zheng G, Xia R, Zhou W, Tao J, Chen L. Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2016;50:1443–50.
    1. Gates N, Singh MAF, Sachdev PS, Valenzuela M. The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. Am J Geriatr Psychiatry. 2013;21:1086–1097. doi: 10.1016/j.jagp.2013.02.018.
    1. Kirk-Sanchez NJ, McGough EL. Physical exercise and cognitive performance in the elderly: current perspectives. Clin Interv Aging. 2014;9:51–62.
    1. Boecker H, Sprenger T, Spilker ME, Henriksen G, Koppenhoefer M, Wagner KJ, Valet M, Berthele A, Tolle TR. The runner’s high: opioidergic mechanisms in the human brain. Cereb Cortex. 2008;18:2523–2531. doi: 10.1093/cercor/bhn013.
    1. Vogt T, Schneider S, Abeln V, Anneken V, Strüder HK. Exercise, mood and cognitive performance in intellectual disability—A neurophysiological approach. Behav Brain Res. 2012;226:473–480. doi: 10.1016/j.bbr.2011.10.015.
    1. Chaddock L, Hillman CH, Pontifex MB, Johnson CR, Raine LB, Kramer AF. Childhood aerobic fitness predicts cognitive performance one year later. J Sports Sci. 2012;30:421–430. doi: 10.1080/02640414.2011.647706.
    1. Vaynman S, Gomez‐Pinilla F. Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J Neurosci Res. 2006;84:699–715. doi: 10.1002/jnr.20979.
    1. Gomez‐Pinilla F, Hillman C. The influence of exercise on cognitive abilities. Compr Physiol. 2013;3:403–28.
    1. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci. 2011;108:3017–3022. doi: 10.1073/pnas.1015950108.
    1. Holzschneider K, Wolbers T, Röder B, Hötting K. Cardiovascular fitness modulates brain activation associated with spatial learning. Neuroimage. 2012;59:3003–3014. doi: 10.1016/j.neuroimage.2011.10.021.
    1. Budde H, Brunelli A, Machado S, Velasques B, Ribeiro P, Arias-Carrión O, Voelcker-Rehage C. Intermittent maximal exercise improves attentional performance only in physically active students. Arch Med Res. 2012;43:125–131. doi: 10.1016/j.arcmed.2012.02.005.
    1. Voss MW, Chaddock L, Kim JS, VanPatter M, Pontifex MB, Raine LB, Cohen NJ, Hillman CH, Kramer AF. Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience. 2011;199:166–176. doi: 10.1016/j.neuroscience.2011.10.009.
    1. Gómez-Pinilla F, Feng C. Molecular mechanisms for the ability of exercise supporting cognitive abilities and counteracting neurological disorders. In Functional Neuroimaging in Exercise and Sport Sciences. New York: Springer; 2012:25–43.
    1. Wang Z, van Praag H. Exercise and the brain: neurogenesis, synaptic plasticity, spine density, and angiogenesis. In Functional Neuroimaging in Exercise and Sport Sciences. New York: Springer; 2012:3–24.
    1. Adlard PA, Perreau VM, Pop V, Cotman CW. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. J Neurosci. 2005;25:4217–4221. doi: 10.1523/JNEUROSCI.0496-05.2005.
    1. Ke H-C, Huang H-J, Liang K-C, Hsieh-Li HM. Selective improvement of cognitive function in adult and aged APP/PS1 transgenic mice by continuous non-shock treadmill exercise. Brain Res. 2011;1403:1–11. doi: 10.1016/j.brainres.2011.05.056.
    1. Unger JB, Johnson CA, Marks G. Functional decline in the elderly: evidence for direct and stress-buffering protective effects of social interactions and physical activity. Ann Behav Med. 1997;19:152–160. doi: 10.1007/BF02883332.
    1. Lam LC, Chau R, Wong BM, Fung AW, Lui VW, Tam CC, Leung GT, Kwok TC, Chiu HF, Ng S. Interim follow‐up of a randomized controlled trial comparing Chinese style mind body (Tai Chi) and stretching exercises on cognitive function in subjects at risk of progressive cognitive decline. Int J Geriatr Psychiatry. 2011;26:733–740. doi: 10.1002/gps.2602.
    1. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256:183–194. doi: 10.1111/j.1365-2796.2004.01388.x.
    1. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–699. doi: 10.1111/j.1532-5415.2005.53221.x.
    1. Wechsler D. Wechsler adult intelligence scale-fourth. San Antonio, TX: The Psychological Corporation Google Scholar; 2008.
    1. Hendriks M, Bouman Z, Kessels R, Aldenkamp A. Wechsler Memory Scale-Dutch Edition (WMS-IV-NL) Amsterdam: Pearson Assessment; 2014.
    1. Randolph C, Tierney MC, Mohr E, Chase TN. The repeatable battery for the assessment of neuropsychological Status (RBANS): preliminary clinical validity. J Clin Exp Neuropsychol. 1998;20:310–319. doi: 10.1076/jcen.20.3.310.823.
    1. Corrado D, Pelliccia A, Heidbuchel H, Sharma S, Link M, Basso C, Biffi A, Buja G, Delise P, Gussac I. Recommendations for interpretation of 12-lead electrocardiogram in the athlete. Eur Heart J. 2010;31:243–259. doi: 10.1093/eurheartj/ehp473.
    1. Borg G. Borg’s perceived exertion and pain scales. Champaign: Human Kinetics; 1998.
    1. de Jager CA, Schrijnemaekers A-CM, Honey TE, Budge MM. Detection of MCI in the clinic: evaluation of the sensitivity and specificity of a computerised test battery, the Hopkins Verbal Learning Test and the MMSE. Age Ageing. 2009;38(4):455–60. doi: 10.1093/ageing/afp068.
    1. Maruff P, Thomas E, Cysique L, Brew B, Collie A, Snyder P, Pietrzak RH. Validity of the CogState brief battery: relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex. Arch Clin Neuropsychol. 2009;24:165–178. doi: 10.1093/arclin/acp010.
    1. Thurstone LL. Primary mental abilities. In The Measurement of Intelligence. Netherlands: Springer; 1973:131–136.
    1. Benton A, Hamsher K, Sivan A. Multilingual Aphasia Examination. Iowa City, IA: AJA Associates. Inc; 1989.
    1. Reitan RM. The relation of the trail making test to organic brain damage. J Consult Psychol. 1955;19:393. doi: 10.1037/h0044509.
    1. Lezak MD. Neuropsychological assessment. USA: Oxford University Press; 2004.
    1. Thompson TA, Wilson PH, Snyder PJ, Pietrzak RH, Darby D, Maruff P, Buschke H. Sensitivity and test–retest reliability of the international shopping list test in assessing verbal learning and memory in mild Alzheimer's disease. Arch Clin Neuropsychol. 2011;26:412–424. doi: 10.1093/arclin/acr039.
    1. Lim YY, Ellis KA, Harrington K, Ames D, Martins RN, Masters CL, Rowe C, Savage G, Szoeke C, Darby D. Use of the CogState Brief Battery in the assessment of Alzheimer's disease related cognitive impairment in the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. J Clin Exp Neuropsychol. 2012;34:345–358. doi: 10.1080/13803395.2011.643227.
    1. Fletcher GF, Balady GJ, Amsterdam EA, Chaitman B, Eckel R, Fleg J, Froelicher VF, Leon AS, Piña IL, Rodney R. Exercise standards for testing and training a statement for healthcare professionals from the American Heart Association. Circulation. 2001;104:1694–1740. doi: 10.1161/hc3901.095960.
    1. Åstrand P-O, Ryhming I. A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work. J Appl Physiol. 1954;7:218–221.
    1. Stel VS, Smit JH, Pluijm SM, Visser M, Deeg DJ, Lips P. Comparison of the LASA Physical Activity Questionnaire with a 7-day diary and pedometer. J Clin Epidemiol. 2004;57:252–258. doi: 10.1016/j.jclinepi.2003.07.008.
    1. Smith S, Lamping D, Banerjee S, Harwood R, Foley B, Smith P, Cook J, Murray J, Prince M, Levin E. Measurement of health-related quality of life for people with dementia: development of a new instrument (DEMQOL) and an evaluation of current methodology. Health Technol Assess. 2005;9:1–93.
    1. Mhaoláin AMN, Gallagher D, Crosby L, Ryan D, Lacey L, Coen RF, Coakley D, Walsh JB, Cunningham C, Lawlor B. Frailty and quality of life for people with Alzheimer’s dementia and mild cognitive impairment. Am J Alzheimers Dis Other Demen. 2012;27:48–54. doi: 10.1177/1533317511435661.
    1. Radloff LS. The CES-D scale a self-report depression scale for research in the general population. Appl Psychol Meas. 1977;1:385–401. doi: 10.1177/014662167700100306.
    1. Irwin M, Artin KH, Oxman MN. Screening for depression in the older adult: criterion validity of the 10-item Center for Epidemiological Studies Depression Scale (CES-D) Arch Intern Med. 1999;159:1701–1704. doi: 10.1001/archinte.159.15.1701.
    1. Barnes DE, Alexopoulos GS, Lopez OL, Williamson JD, Yaffe K. Depressive symptoms, vascular disease, and mild cognitive impairment: findings from the Cardiovascular Health Study. Arch Gen Psychiatry. 2006;63:273–279. doi: 10.1001/archpsyc.63.3.273.
    1. Richard E, Reitz C, Honig LH, Schupf N, Tang MX, Manly JJ, Mayeux R, Devanand D, Luchsinger JA. Late-life depression, mild cognitive impairment, and dementia. JAMA Neurol. 2013;70:383–389. doi: 10.1001/jamaneurol.2013.603.
    1. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x.
    1. Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C, Sayer AA. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011;40(4):423–9. doi: 10.1093/ageing/afr051.
    1. Bohannon RW. Hand‐grip dynamometry predicts future outcomes in aging adults. J Geriatr Phys Ther. 2008;31:3–10. doi: 10.1519/00139143-200831010-00002.
    1. Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport. 1999;70:113–119. doi: 10.1080/02701367.1999.10608028.
    1. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63:168–174. doi: 10.1001/archpsyc.63.2.168.
    1. Montag C, Kunz L, Axmacher N, Sariyska R, Lachmann B, Reuter M. Common genetic variation of the APOE gene and personality. BMC Neurosci. 2014;15:1. doi: 10.1186/1471-2202-15-64.
    1. Schutte NS, Malouff JM, Hall LE, Haggerty DJ, Cooper JT, Golden CJ, Dornheim L. Development and validation of a measure of emotional intelligence. Personal Individ Differ. 1998;25:167–177. doi: 10.1016/S0191-8869(98)00001-4.
    1. Sofi F, Valecchi D, Bacci D, Abbate R, Gensini GF, Casini A, Macchi C. Physical activity and risk of cognitive decline: a meta‐analysis of prospective studies. J Intern Med. 2011;269:107–117. doi: 10.1111/j.1365-2796.2010.02281.x.
    1. Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J, Greenop KR, Almeida OP. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA. 2008;300:1027–1037. doi: 10.1001/jama.300.9.1027.
    1. Suzuki T, Shimada H, Makizako H, Doi T, Yoshida D, Tsutsumimoto K, Anan Y, Uemura K, Lee S, Park H. Effects of multicomponent exercise on cognitive function in older adults with amnestic mild cognitive impairment: a randomized controlled trial. BMC Neurol. 2012;12:1. doi: 10.1186/1471-2377-12-128.
    1. Robertson DA, Savva GM, Kenny RA. Frailty and cognitive impairment—a review of the evidence and causal mechanisms. Ageing Res Rev. 2013;12:840–851. doi: 10.1016/j.arr.2013.06.004.

Source: PubMed

3
Iratkozz fel