A comparative effectiveness study of two culturally competent models of diabetes self-management programming for Latinos from low-income households

Janet Page-Reeves, Lidia Regino, Cristina Murray-Krezan, Molly Bleecker, Erik Erhardt, Mark Burge, Elaine Bearer, Shiraz Mishra, Janet Page-Reeves, Lidia Regino, Cristina Murray-Krezan, Molly Bleecker, Erik Erhardt, Mark Burge, Elaine Bearer, Shiraz Mishra

Abstract

Background: Diabetes risk is extremely high for Latinos from low-income households. Health guidelines recommend that individuals learn strategies to self-manage their diabetes, but getting people to adopt required lifestyle changes is challenging and many people are not able to prevent their pre-diabetes from escalating or effectively control their diabetes. Systematic reviews show that culturally competent self-management programs can significantly improve diabetes outcomes and different models for culturally competent programming have been developed.

Methods: This patient-engaged study will compare the effectiveness of two distinct evidence-based models for culturally competent diabetes health promotion at two sites that serve a large Latino patient population from low-income households: 1) The Diabetes Self-Management Support Empowerment Model, an educational session approach, and 2) The Chronic Care Model, a holistic community-based program. Data collection will involve interviews, focus groups, surveys and assessments of each program; and testing of patient participants for A1c, depression, Body Mass Index (BMI), and chronic stress with hair cortisol levels. We will recruit a total of 240 patient-social support pairs: Patients will be adults (men and women over the age of 18) who: 1.) Enter one of the two diabetes programs during the study; 2.) Self-identify as "Latino;" 3.) Are able to identify a social support person or key member of their social network who also agrees to participate with them; 4.) Are not pregnant (participants who become pregnant during the study will be excluded); and 5.) Have household income 250% of the Federal Poverty Level (FPL) or below. Social supports will be adults who are identified by the patient participants.

Primary outcome: Improved capacity for diabetes self-management measured through improvements in diabetes knowledge and diabetes-related patient activation.

Secondary outcome: Successful diabetes self-management as measured by improvements in A1c, depression scale scores, BMI, and circulating levels of cortisol to determine chronic stress.

Discussion: Our hypothesis is that the program model that interfaces most synergistically with patients' culture and everyday life circumstances will have the best diabetes health outcomes.

Trial registration: This study was registered with ClinicalTrials.gov on December 16, 2016 (Registration # NCT03004664 ).

Keywords: Cultural competency; Diabetes; Hispanic Americans; Low-income; Self-care.

Conflict of interest statement

Ethics approval and consent to participate

This study was approved by the Human Research Protections Office (HRPO) which is the ethnics committee for the University of New Mexico (UNM) on October 7, 2016 (HRPO study approval #16–303). The study began recruiting in February 2017. All participants will provide written informed consent.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Conceptual model

References

    1. Beckles G, Zhu J, Moonesinghe R. Diabetes - United States, 2004 and 2008. Morb Mortal Wkly Rep. 2011;60(Suppl 1):90–93.
    1. Barrera M, Castro FG, Strycker LA, Toobert DJ. Cultural adaptations of behavioral health interventions: A progress report. J Consult Clin Psychol. 2013;81(2):196–205. doi: 10.1037/a0027085.
    1. Hawthorne K, Robles Y, Cannings-John R, Edwards AGK. Culturally appropriate health education for Type 2 diabetes in ethnic minority groups: a systematic and narrative review of randomized controlled trials. Diabet Med J Br Diabet Assoc. 2010;27(6):613–623. doi: 10.1111/j.1464-5491.2010.02954.x.
    1. Kong A, Tussing-Humphreys LM, Odoms-Young AM, Stolley MR, Fitzgibbon ML. Systematic review of behavioural interventions with culturally adapted strategies to improve diet and weight outcomes in African American women. Obes Rev Off J Int Assoc Study Obes. 2014;15(Suppl 4):62–92. doi: 10.1111/obr.12203.
    1. Lie DA, Lee-Rey E, Gomez A, Bereknyei S, Braddock CH. Does cultural competency training of health professionals improve patient outcomes? A systematic review and proposed algorithm for future research. J Gen Intern Med. 2011;26(3):317–325. doi: 10.1007/s11606-010-1529-0.
    1. Nam S, Janson SL, Stotts NA, Chesla C, Kroon L. Effect of culturally tailored diabetes education in ethnic minorities with type 2 diabetes: a meta-analysis. J Cardiovasc Nurs. 2012;27(6):505–518. doi: 10.1097/JCN.0b013e31822375a5.
    1. Pottie K, Hadi A, Chen J, Welch V, Hawthorne K. Realist review to understand the efficacy of culturally appropriate diabetes education programmes. Diabet Med J Br Diabet Assoc. 2013;30(9):1017–1025. doi: 10.1111/dme.12188.
    1. Ricci-Cabello I, Ruiz-Pérez I, Rojas-García A, Pastor G, Rodríguez-Barranco M, Gonçalves DC. Characteristics and effectiveness of diabetes self-management educational programs targeted to racial/ethnic minority groups: a systematic review, meta-analysis and meta-regression. BMC Endocr Disord. 2014;14:60. doi: 10.1186/1472-6823-14-60.
    1. Whittemore R. Culturally competent interventions for Hispanic adults with type 2 diabetes: a systematic review. J Transcult Nurs Off J Transcult Nurs Soc Transcult Nurs Soc. 2007;18(2):157–166. doi: 10.1177/1043659606298615.
    1. Zeh P, Sandhu HK, Cannaby AM, Sturt JA. The impact of culturally competent diabetes care interventions for improving diabetes-related outcomes in ethnic minority groups: a systematic review. Diabet Med J Br Diabet Assoc. 2012;29(10):1237–1252. doi: 10.1111/j.1464-5491.2012.03701.x.
    1. Dauvrin M, Lorant V, d’Hoore W. Is the chronic care model integrated into research examining culturally competent interventions for ethnically diverse adults with Type 2 diabetes mellitus? A review. Eval Health Prof. 2015. doi:10.1177/0163278715571004.
    1. Brown A, Lopez MH. Ranking Latino Populations in the States. Pew Res Cent Hisp Trends Proj. August 2013. . Accessed 2 Feb 2016.
    1. United States Census Bureau. American Community Survey Demographics and Housing Estimates 2012. American Fact Finder. . Accessed 1 Sept 2014.
    1. The Heller School for Social Policy and Management. Albuquerque, NM. . . Accessed 4 Feb 2016.
    1. New Mexico Department of Health. New Mexico’s Indicator-Based Information System. . Accessed 4 Feb 2016.
    1. Ennis SR, Rios-Vargas M, Albert NG. The Hispanic Population: 2010. United States Census Bureau; 2011. . Accessed 2 Feb 2016.
    1. Funnell MM, Brown TL, Childs BP, Haas LB, Hosey GM, Jensen B, Maryniuk M, Peyrot M, Piette JD, Reader D, Siminerio LM, Weinger K, Weiss MA. National Standards for diabetes self-management education. Diabetes Care. 2011;34(Suppl 1):S89–S96. doi: 10.2337/dc11-S089.
    1. Stellefson M, Dipnarine K, Stopka C. The chronic care model and diabetes management in US primary care settings: a systematic review. Prev Chronic Dis. 2013;10 doi: 10.5888/pcd10.120180.
    1. Agency for Healthcare Research and Quality. CAHPS: Assessing Health Care Quality From the Patient’s Perspective. US Department of Health and Human Services; 2014. . Accessed 10 Nov 2015.
    1. Agency for Healthcare Research and Quality. About the CAHPS Cultural Competence Item Set. . Accessed 10 Nov 2015.
    1. Sixta CS, Ostwald S. Texas-Mexico border intervention by promotores for patients with type 2 diabetes. Diabetes Educ. 2008;34(2):299–309. doi: 10.1177/0145721708314490.
    1. Mauldon M, Melkus GD, Cagganello M. Tomando Control: a culturally appropriate diabetes education program for Spanish-speaking individuals with type 2 diabetes mellitus--evaluation of a pilot project. Diabetes Educ. 2006;32(5):751–760. doi: 10.1177/0145721706291999.
    1. Garcia AA, Villagomez ET, Brown SA, Kouzekanani K, Hanis CL. The Starr County Diabetes Education Study: development of the Spanish-language diabetes knowledge questionnaire. Diabetes Care. 2001;24(1):16–21. doi: 10.2337/diacare.24.1.16.
    1. Schiøtz ML, Bøgelund M, Almdal T, Jensen BB, Willaing I. Social support and self-management behaviour among patients with Type 2 diabetes. Diabet Med J Br Diabet Assoc. 2012;29(5):654–661. doi: 10.1111/j.1464-5491.2011.03485.x.
    1. Rygg LØ, Rise MB, Grønning K, Steinsbekk A. Efficacy of ongoing group based diabetes self-management education for patients with type 2 diabetes mellitus. A randomised controlled trial. Patient Educ Couns. 2012;86(1):98–105. doi: 10.1016/j.pec.2011.04.008.
    1. Parchman ML, Zeber JE, Palmer RF. Participatory decision making, patient activation, medication adherence, and intermediate clinical outcomes in type 2 diabetes: a STARNet study. Ann Fam Med. 2010;8(5):410–417. doi: 10.1370/afm.1161.
    1. Hibbard JH, Mahoney ER, Stock R, Tusler M. Do increases in patient activation result in improved self-management behaviors? Health Serv Res. 2007;42(4):1443–1463. doi: 10.1111/j.1475-6773.2006.00669.x.
    1. Hibbard JH, Mahoney E. Toward a theory of patient and consumer activation. Patient Educ Couns. 2010;78(3):377–381. doi: 10.1016/j.pec.2009.12.015.
    1. Hibbard JH. Community-based participation approaches and individual health activation. J Ambulatory Care Manage. 2009;32(4):275–277. doi: 10.1097/JAC.0b013e3181ba6f63.
    1. Hendriks M, Rademakers J. Relationships between patient activation, disease-specific knowledge and health outcomes among people with diabetes; a survey study. BMC Health Serv Res. 2014;14:393. doi: 10.1186/1472-6963-14-393.
    1. Dixon A, Hibbard J, Tusler M. How do People with Different Levels of Activation Self-Manage their Chronic Conditions? The Patient. 2009;2(4):257–268. doi: 10.2165/11313790-000000000-00000.
    1. Hibbard JH, Stockard J, Mahoney ER, Tusler M. Development of the Patient Activation Measure (PAM): conceptualizing and measuring activation in patients and consumers. Health Serv Res. 2004;39(4 Pt 1):1005–1026. doi: 10.1111/j.1475-6773.2004.00269.x.
    1. Huang FY, Chung H, Kroenke K, Delucchi KL, Spitzer RL. Using the Patient Health Questionnaire-9 to measure depression among racially and ethnically diverse primary care patients. J Gen Intern Med. 2006;21(6):547–552. doi: 10.1111/j.1525-1497.2006.00409.x.
    1. Gilbody S, Richards D, Brealey S, Hewitt C. Screening for depression in medical settings with the Patient Health Questionnaire (PHQ): a diagnostic meta-analysis. J Gen Intern Med. 2007;22(11):1596–1602. doi: 10.1007/s11606-007-0333-y.
    1. Reuland DS, Cherrington A, Watkins GS, Bradford DW, Blanco RA, Gaynes BN. Diagnostic accuracy of Spanish language depression-screening instruments. Ann Fam Med. 2009;7(5):455–462. doi: 10.1370/afm.981.
    1. Kroenke K, Spitzer RL, Williams JBW. The PHQ-9: Validity of a Brief Depression Severity Measure. J Gen Intern Med. 2001;16(9):606–613. doi: 10.1046/j.1525-1497.2001.016009606.x.
    1. Yamada J, Stevens B, de Silva N, Gibbins S, Beyene J, Taddio A, Newman C, Koren G. Hair cortisol as a potential biologic marker of chronic stress in hospitalized neonates. Neonatology. 2007;92(1):42–49. doi: 10.1159/000100085.
    1. Guest G, Bunce A, Johnson L. How Many Interviews Are Enough? Field Methods. 2006;18(1):59–82. doi: 10.1177/1525822X05279903.
    1. Lehrer HM, Dubois SK, Maslowsky J, Laudenslager ML, Steinhardt MA. Hair cortisol concentration and glycated hemoglobin in African American adults. Psychoneuroendocrinology. 2016;72:212–218. doi: 10.1016/j.psyneuen.2016.06.018.
    1. Larsen SC, Fahrenkrug J, Olsen NJ, Heitmann BL. Association between Hair Cortisol Concentration and Adiposity Measures among Children and Parents from the “Healthy Start” Study. PLoS One. 2016;11(9) doi: 10.1371/journal.pone.0163639.
    1. Kim S, Love F, Quistberg DA, Shea JA. Association of health literacy with self-management behavior in patients with diabetes. Diabetes Care. 2004;27(12):2980–2982. doi: 10.2337/diacare.27.12.2980.
    1. Selya AS, Rose JS, Dierker LC, Hedeker D, Mermelstein RJ. A Practical Guide to Calculating Cohen’s f(2), a Measure of Local Effect Size, from PROC MIXED. Front Psychol. 2012;3:111. doi: 10.3389/fpsyg.2012.00111.
    1. Gläser J, Laudel G. Life with and without coding: Two methods for early-stage data analysis in qualitative research aiming at causal explanations. Forum Qual Sozialforschung. 2013;14(2). .
    1. Wolever RQ, Dreusicke M, Fikkan J, Hawkins TV, Yeung S, Wakefield J, Duda L, Flowers P, Cook C, Skinner E. Integrative health coaching for patients with type 2 diabetes: a randomized clinical trial. Diabetes Educ. 2010;36(4):629–639. doi: 10.1177/0145721710371523.
    1. Druss BG, Zhao L, von Esenwein SA, Bona JR, Fricks L, Jenkins-Tucker S, Sterling E, DiClemente R, Lorig K. The Health and Recovery Peer (HARP) Program: A peer-led intervention to improve medical self-management for persons with serious mental illness. Schizophr Res. 2010;118(1–3):264–270. doi: 10.1016/j.schres.2010.01.026.
    1. Grønning K, Rannestad T, Skomsvoll JF, Rygg LØ, Steinsbekk A. Long-term effects of a nurse-led group and individual patient education programme for patients with chronic inflammatory polyarthritis - a randomised controlled trial. J Clin Nurs. 2014;23(7–8):1005–1017. doi: 10.1111/jocn.12353.
    1. Lorig K, Ritter PL, Villa FJ, Armas J. Community-based peer-led diabetes self-management: a randomized trial. Diabetes Educ. 2009;35(4):641–651. doi: 10.1177/0145721709335006.
    1. Looker HC, Knowler WC, Hanson RL. Changes in BMI and weight before and after the development of type 2 diabetes. Diabetes Care. 2001;24(11):1917–1922. doi: 10.2337/diacare.24.11.1917.
    1. Avery L, Flynn D, van Wersch A, Sniehotta FF, Trenell MI. Changing physical activity behavior in type 2 diabetes: a systematic review and meta-analysis of behavioral interventions. Diabetes Care. 2012;35(12):2681–2689. doi: 10.2337/dc11-2452.
    1. Bogner HR, Morales KH, de Vries HF, Cappola AR. Integrated management of type 2 diabetes mellitus and depression treatment to improve medication adherence: a randomized controlled trial. Ann Fam Med. 2012;10(1):15–22. doi: 10.1370/afm.1344.
    1. Lorig K, Ritter PL, Laurent DD, Plant K, Green M, Jernigan VBB, Case S. Online diabetes self-management program: a randomized study. Diabetes Care. 2010;33(6):1275–1281. doi: 10.2337/dc09-2153.
    1. Sauvé B, Koren G, Walsh G, Tokmakejian S, Van Uum SH. Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin Invest Med. 2007;30(5):E183–E191. doi: 10.25011/cim.v30i5.2894.
    1. Russell E, Kirschbaum C, Laudenslager ML, Stalder T, de Rijke Y, van Rossum EF, Van Uum S, Koren G. Toward standardization of hair cortisol measurement: results of the first international interlaboratory round robin. Ther Drug Monit. 2015;37(1):71–75. doi: 10.1097/FTD.0000000000000148.
    1. Staufenbiel SM, Penninx BW, de Rijke YB, van den Akker EL, van Rossum EF. Determinants of hair cortisol and hair cortisone concentrations in adults. Psychoneuroendocrinology. 2015;60:182–194. doi: 10.1016/j.psyneuen.2015.06.011.
    1. Short SJ, Stalder T, Marceau K, Entringer S, Moog NK, Shirtcliff EA, Wadhwa PD, Buss C. Correspondence between hair cortisol concentrations and 30-day integrated daily salivary and weekly urinary cortisol measures. Psychoneuroendocrinology. 2016;71:12–18. doi: 10.1016/j.psyneuen.2016.05.007.
    1. Ursache A, Merz EC, Melvin S, Meyer J, Noble KG. Socioeconomic status, hair cortisol and internalizing symptoms in parents and children. Psychoneuroendocrinology. 2017;78:142–150. doi: 10.1016/j.psyneuen.2017.01.020.
    1. Aguiló J, Ferrer-Salvans P, García-Rozo A, Armario A, Corbí Á, Cambra FJ, Bailón R, González-Marcos A, Caja G, Aguiló S, López-Antón R, Arza-Valdés A, Garzón-Rey JM. Project ES3: attempting to quantify and measure the level of stress. Rev Neurol. 2015;61(9):405–415.
    1. Cohen JE. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates, Inc: Hillsdale; 1988.

Source: PubMed

3
Iratkozz fel