Immersive Virtual Reality and Ocular Tracking for Brain Mapping During Awake Surgery: Prospective Evaluation Study

Morgane Casanova, Anne Clavreul, Gwénaëlle Soulard, Matthieu Delion, Ghislaine Aubin, Aram Ter Minassian, Renaud Seguier, Philippe Menei, Morgane Casanova, Anne Clavreul, Gwénaëlle Soulard, Matthieu Delion, Ghislaine Aubin, Aram Ter Minassian, Renaud Seguier, Philippe Menei

Abstract

Background: Language mapping during awake brain surgery is currently a standard procedure. However, mapping is rarely performed for other cognitive functions that are important for social interaction, such as visuospatial cognition and nonverbal language, including facial expressions and eye gaze. The main reason for this omission is the lack of tasks that are fully compatible with the restrictive environment of an operating room and awake brain surgery procedures.

Objective: This study aims to evaluate the feasibility and safety of a virtual reality headset equipped with an eye-tracking device that is able to promote an immersive visuospatial and social virtual reality (VR) experience for patients undergoing awake craniotomy.

Methods: We recruited 15 patients with brain tumors near language and/or motor areas. Language mapping was performed with a naming task, DO 80, presented on a computer tablet and then in 2D and 3D via the VRH. Patients were also immersed in a visuospatial and social VR experience.

Results: None of the patients experienced VR sickness, whereas 2 patients had an intraoperative focal seizure without consequence; there was no reason to attribute these seizures to virtual reality headset use. The patients were able to perform the VR tasks. Eye tracking was functional, enabling the medical team to analyze the patients' attention and exploration of the visual field of the virtual reality headset directly.

Conclusions: We found that it is possible and safe to immerse the patient in an interactive virtual environment during awake brain surgery, paving the way for new VR-based brain mapping procedures.

Trial registration: ClinicalTrials.gov NCT03010943; https://ichgcp.net/clinical-trials-registry/NCT03010943.

Keywords: awake surgery; brain mapping; eye tracking; mobile phone; nonverbal language; virtual reality; visuospatial cognition.

Conflict of interest statement

Conflicts of Interest: RS is a cofounder of Dynamixyz, which markets the facial expression transfer tool used to animate avatars. He reports personal fees from Dynamixyz. None of the other authors have any conflicts of interest to declare.

©Morgane Casanova, Anne Clavreul, Gwénaëlle Soulard, Matthieu Delion, Ghislaine Aubin, Aram Ter Minassian, Renaud Seguier, Philippe Menei. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 24.03.2021.

Figures

Figure 1
Figure 1
(A) Patient wearing the virtual reality headset. (B) and (C) Example of the item “phone” in the DO 80 naming task presented in 2D (B) and 3D (C) with the virtual reality headset. The green spot indicates the patient’s gaze.
Figure 2
Figure 2
Left: view of the operating room during the procedure. (A) Head of the patient wearing the virtual reality headset; (B) application of direct electrical stimulation to the exposed brain; (C) screen showing what the patient sees in the virtual reality headset, his gaze materialized by a green spot; (D) neuronavigational system showing brain white matter fascicles and the position of the electrode. Right: example of a layout after the virtual reality task simulating a visuospatial and social experience. (E) The image that is visualized and analyzed on the screen (C). The movement of the patient’s gaze is visualized as a blue line (with the starting point in green and the endpoint in pink). The green box indicates the avatar making eye contact. The white arrow indicates the avatar on which the patient focuses for more than 0.6 seconds (triggering the expression of a dynamic facial emotion). In this example, the patient identified the avatar making eye contact in 2.53 seconds and indicated the emotion expressed 3.77 seconds later.

References

    1. Freyschlag CF, Duffau H. Awake brain mapping of cortex and subcortical pathways in brain tumor surgery. J Neurosurg Sci. 2014 Dec;58(4):199–213.
    1. Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language mapping for glioma resection. N Engl J Med. 2008 Jan 03;358(1):18–27. doi: 10.1056/NEJMoa067819.
    1. Bernard F, Lemée JM, Ter Minassian A, Menei P. Right Hemisphere Cognitive Functions: From Clinical and Anatomic Bases to Brain Mapping During Awake Craniotomy Part I: Clinical and Functional Anatomy. World Neurosurg. 2018 Oct;118:348–359. doi: 10.1016/j.wneu.2018.05.024.
    1. Mazerand E, Le RM, Hue S, Lemée JM, Klinger E, Menei P. Intraoperative Subcortical Electrical Mapping of the Optic Tract in Awake Surgery Using a Virtual Reality Headset. World Neurosurg. 2017 Jan;97:424–430. doi: 10.1016/j.wneu.2016.10.031.
    1. Kasteleijn-Nolst Trenité DGA, Martins da Silva A, Ricci S, Rubboli G, Tassinari CA, Lopes J, Bettencourt M, Oosting J, Segers JP. Video games are exciting: a European study of video game-induced seizures and epilepsy. Epileptic Disord. 2002 Jun;4(2):121–8.
    1. Merhi O, Faugloire E, Flanagan M, Stoffregen TA. Motion sickness, console video games, and head-mounted displays. Hum Factors. 2007 Oct;49(5):920–34. doi: 10.1518/001872007X230262.
    1. Sharples S, Cobb S, Moody A, Wilson JR. Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays. 2008 Mar;29(2):58–69. doi: 10.1016/j.displa.2007.09.005.
    1. Shoja MM, Tubbs RS, Malekian A, Jafari Rouhi AH, Barzgar M, Oakes WJ. Video game epilepsy in the twentieth century: a review. Childs Nerv Syst. 2007 Mar;23(3):265–7. doi: 10.1007/s00381-006-0285-2.
    1. Delion M, Klinger E, Bernard F, Aubin G, Ter Minassian A, Menei P. Immersing Patients in a Virtual Reality Environment for Brain Mapping During Awake Surgery: Safety Study. World Neurosurg. 2020 Feb;134:e937–e943. doi: 10.1016/j.wneu.2019.11.047.
    1. Deloche G, Hannequin D. Test de dénomination orale d'images DO 80. Paris: Les Editions du Centre de Psychologie Appliquée; 1997.
    1. Bernard F, Lemée JM, Aubin G, Ter Minassian A, Menei P. Using a Virtual Reality Social Network During Awake Craniotomy to Map Social Cognition: Prospective Trial. J Med Internet Res. 2018 Jun 26;20(6):e10332. doi: 10.2196/10332.
    1. Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P, Taillandier L, Lopes M, Mitchell MC, Roche S, Muller JC, Bitar A, Sichez JP, van Effenterre R. Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg. 2003 Apr;98(4):764–78. doi: 10.3171/jns.2003.98.4.0764.
    1. Ojemann JG, Ojemann GA, Lettich E. Cortical stimulation mapping of language cortex by using a verb generation task: effects of learning and comparison to mapping based on object naming. J Neurosurg. 2002 Jul;97(1):33–8. doi: 10.3171/jns.2002.97.1.0033.
    1. Dynamixyz. [2021-03-12].
    1. Buker TJ, Vincenzi DA, Deaton JE. The effect of apparent latency on simulator sickness while using a see-through helmet-mounted display: reducing apparent latency with predictive compensation. Hum Factors. 2012 Apr;54(2):235–49. doi: 10.1177/0018720811428734.
    1. Chen W, Chao JG, Chen XW, Wang JK, Tan C. Quantitative orientation preference and susceptibility to space motion sickness simulated in a virtual reality environment. Brain Res Bull. 2015 Apr;113:17–26. doi: 10.1016/j.brainresbull.2015.01.007.
    1. Kim YY, Kim HJ, Kim EN, Ko HD, Kim HT. Characteristic changes in the physiological components of cybersickness. Psychophysiology. 2005 Sep;42(5):616–25. doi: 10.1111/j.1469-8986.2005.00349.x.
    1. Malińska M, Zużewicz K, Bugajska J, Grabowski A. Heart rate variability (HRV) during virtual reality immersion. Int J Occup Saf Ergon. 2015;21(1):47–54. doi: 10.1080/10803548.2015.1017964.
    1. Nalivaiko E, Davis SL, Blackmore KL, Vakulin A, Nesbitt KV. Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time. Physiol Behav. 2015 Nov 01;151:583–90. doi: 10.1016/j.physbeh.2015.08.043.
    1. Ohyama S, Nishiike S, Watanabe H, Matsuoka K, Akizuki H, Takeda N, Harada T. Autonomic responses during motion sickness induced by virtual reality. Auris Nasus Larynx. 2007 Sep;34(3):303–6. doi: 10.1016/j.anl.2007.01.002.
    1. Ghazanwy M, Chakrabarti R, Tewari A, Sinha A. Awake craniotomy: A qualitative review and future challenges. Saudi J Anaesth. 2014 Oct;8(4):529–39. doi: 10.4103/1658-354X.140890.
    1. Kelm A, Sollmann N, Ille S, Meyer B, Ringel F, Krieg SM. Resection of Gliomas with and without Neuropsychological Support during Awake Craniotomy-Effects on Surgery and Clinical Outcome. Front Oncol. 2017;7:176. doi: 10.3389/fonc.2017.00176. doi: 10.3389/fonc.2017.00176.
    1. Pallud J, Rigaux-Viode O, Corns R, Muto J, Lopez Lopez C, Mellerio C, Sauvageon X, Dezamis E. Direct electrical bipolar electrostimulation for functional cortical and subcortical cerebral mapping in awake craniotomy. Practical considerations. Neurochirurgie. 2017 Jun;63(3):164–174. doi: 10.1016/j.neuchi.2016.08.009.
    1. Pouratian N, Cannestra AF, Bookheimer SY, Martin NA, Toga AW. Variability of intraoperative electrocortical stimulation mapping parameters across and within individuals. J Neurosurg. 2004 Sep;101(3):458–66. doi: 10.3171/jns.2004.101.3.0458.
    1. Conte V, Carrabba G, Magni L, L'Acqua C, Magnoni S, Bello L, Colombo A, Stocchetti N. Risk of perioperative seizures in patients undergoing craniotomy with intraoperative brain mapping. Minerva Anestesiol. 2015 Apr;81(4):379–88.
    1. Eseonu CI, Rincon-Torroella J, Lee YM, ReFaey K, Tripathi P, Quinones-Hinojosa A. Intraoperative Seizures in Awake Craniotomy for Perirolandic Glioma Resections That Undergo Cortical Mapping. J Neurol Surg A Cent Eur Neurosurg. 2018 May;79(3):239–246. doi: 10.1055/s-0037-1617759.
    1. Nossek E, Matot I, Shahar T, Barzilai O, Rapoport Y, Gonen T, Sela G, Grossman R, Korn A, Hayat D, Ram Z. Intraoperative seizures during awake craniotomy: incidence and consequences: analysis of 477 patients. Neurosurgery. 2013 Jul;73(1):135–40; discussion 140. doi: 10.1227/01.neu.0000429847.91707.97.
    1. Pouratian N, Cannestra AF, Bookheimer SY, Martin NA, Toga AW. Variability of intraoperative electrocortical stimulation mapping parameters across and within individuals. J Neurosurg. 2004 Sep;101(3):458–66. doi: 10.3171/jns.2004.101.3.0458.
    1. Wang YC, Lee CC, Takami H, Shen S, Chen KT, Wei KC, Wu MH, Worrell G, Chen PY. Awake craniotomies for epileptic gliomas: intraoperative and postoperative seizure control and prognostic factors. J Neurooncol. 2019 May;142(3):577–586. doi: 10.1007/s11060-019-03131-0.
    1. Roca E, Pallud J, Guerrini F, Panciani PP, Fontanella M, Spena G. Stimulation-related intraoperative seizures during awake surgery: a review of available evidences. Neurosurg Rev. 2020 Feb;43(1):87–93. doi: 10.1007/s10143-019-01214-0.
    1. Nossek E, Matot I, Shahar T, Barzilai O, Rapoport Y, Gonen T, Sela G, Korn A, Hayat D, Ram Z. Failed awake craniotomy: a retrospective analysis in 424 patients undergoing craniotomy for brain tumor. J Neurosurg. 2013 Feb;118(2):243–9. doi: 10.3171/2012.10.JNS12511.
    1. de Borst AW, de Gelder B. Is it the real deal? Perception of virtual characters versus humans: an affective cognitive neuroscience perspective. Front Psychol. 2015;6:576. doi: 10.3389/fpsyg.2015.00576. doi: 10.3389/fpsyg.2015.00576.
    1. Byom LJ, Mutlu B. Theory of mind: mechanisms, methods, and new directions. Front Hum Neurosci. 2013;7:413. doi: 10.3389/fnhum.2013.00413. doi: 10.3389/fnhum.2013.00413.
    1. Shepherd SV. Following gaze: gaze-following behavior as a window into social cognition. Front Integr Neurosci. 2010;4:5. doi: 10.3389/fnint.2010.00005. doi: 10.3389/fnint.2010.00005.
    1. Hamilton AFC. Gazing at me: the importance of social meaning in understanding direct-gaze cues. Philos Trans R Soc Lond B Biol Sci. 2016 Jan 19;371(1686):20150080. doi: 10.1098/rstb.2015.0080.
    1. Cañigueral R, Hamilton AFC. The Role of Eye Gaze During Natural Social Interactions in Typical and Autistic People. Front Psychol. 2019;10:560. doi: 10.3389/fpsyg.2019.00560. doi: 10.3389/fpsyg.2019.00560.
    1. Ferber S, Karnath HO. How to assess spatial neglect--line bisection or cancellation tasks? J Clin Exp Neuropsychol. 2001 Oct;23(5):599–607. doi: 10.1076/jcen.23.5.599.1243.
    1. Ekman P, Friesen WV. Measuring facial movement. J Nonverbal Behav. 1976;1(1):56–75. doi: 10.1007/bf01115465.
    1. Baron-Cohen S, Bowen DC, Holt RJ, Allison C, Auyeung B, Lombardo MV, Smith P, Lai MC. The “Reading the Mind in the Eyes” Test: Complete Absence of Typical Sex Difference in ~400 Men and Women with Autism. PLoS ONE. 2015 Aug 27;10(8):e0136521. doi: 10.1371/journal.pone.0136521.

Source: PubMed

3
Iratkozz fel