Identification and characterization of Loa loa antigens responsible for cross-reactivity with rapid diagnostic tests for lymphatic filariasis

Marla I Hertz, Hugues Nana-Djeunga, Joseph Kamgno, Abdel Jelil Njouendou, Valerine Chawa Chunda, Samuel Wanji, Amy Rush, Peter U Fischer, Gary J Weil, Philip J Budge, Marla I Hertz, Hugues Nana-Djeunga, Joseph Kamgno, Abdel Jelil Njouendou, Valerine Chawa Chunda, Samuel Wanji, Amy Rush, Peter U Fischer, Gary J Weil, Philip J Budge

Abstract

The Global Program to Eliminate Lymphatic Filariasis (LF) relies on rapid diagnostic tests (RDTs) to determine where annual mass drug administration for LF is required and when it can be stopped. These tests detect a Wuchereria bancrofti glycoprotein in the blood of infected persons via a carbohydrate moiety recognized by the monoclonal antibodies AD12 and DH6.5. Loiasis cross-reactivity with LF RDTs has recently been recognized as a serious obstacle to LF elimination in loiasis-endemic areas. To better understand the nature of this cross-reactivity, we used the DH6.5 antibody to immunoaffinity purify Loa loa antigens from the sera of individuals with a positive RDT due to loiasis. Immunoblot analysis revealed many circulating AD12/DH6.5-reactive antigens, and proteomic analysis identified multiple L. loa proteins in LF RDT-positive loiasis sera. These included both secreted and somatic proteins, suggesting that they may be released by dying L. loa adult worms and/or microfilariae. Unlike the single high molecular weight W. bancrofti circulating filarial antigen that is reliably present in the blood of persons with bancroftian filariasis, reactive L. loa antigens appeared to be only transiently present in the blood of a subset of persons with loiasis. These key differences between the circulating antigens of W. bancrofti and L. loa can be used to differentiate positive results generated by both species and may lead to improved diagnostic tests for LF and loiasis.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Field studies and samples tested.
Fig 1. Field studies and samples tested.
(A) Central Cameroon field study. Because the three FTS positive samples were very weakly positive by FTS and negative by ICT, we chose not to examine them further. (B) East Region study. Participants who were ICT-positive on initial screening were visited the following week for venous blood collection. Nine venous blood samples were FTS-positive. Two of these tested negative for filarial antigen by ELISA; the other seven were tested further by ELISA and/or western blot as indicated. Gray shading indicates the origin of the samples used in the proteomic analysis.
Fig 2. Loiasis patient sera lack antibodies…
Fig 2. Loiasis patient sera lack antibodies specific to the AD12 carbohydrate epitope.
Serum samples were tested for the ability to block AD12 binding to B. malayi antigens that contain the AD12 epitope. The horizontal line denotes the mean value for each group.
Fig 3. Loiasis sera positive by LF…
Fig 3. Loiasis sera positive by LF RDT contain multiple AD12 epitope-containing antigens.
(A) AD12 western blot showing reactive bands in pooled sera from 13 individuals with W. bancrofti infection (Wb CFA+) or 12 uninfected individuals (CFA-). (B) Antigens from sample P811355 (355), and pooled cross-reactive sera. Soluble L. loa antigen (Loa Ag, 0.5 μg) served as a positive control. Because the antigen level was much higher in sample P811355 than in the pooled sample, different chemiluminescent exposure times were used for the same blot (45 seconds for soluble L. loa antigen and P811355; 15 minutes for the pooled serum sample).
Fig 4. L . loa secretes glycoproteins…
Fig 4. L. loa secretes glycoproteins reactive with monoclonal antibody AD12.
Western blot of AD12 glycoproteins immunoaffinity purified from 1mL of culture supernatant (ES products) from L. loa adult worms (L5) or microfilaria (Mf). Soluble L. loa antigen (Loa Ag, 0.5 μg) served as a positive control.

References

    1. Hooper PJ, Chu BK, Mikhailov A, Ottesen EA, Bradley M. Assessing progress in reducing the at-risk population after 13 years of the global programme to eliminate lymphatic filariasis. PLoS Negl Trop Dis. 2014;8(11):e3333 .
    1. Gardon J, Gardon-Wendel N, Demanga N, Kamgno J, Chippaux JP, Boussinesq M. Serious reactions after mass treatment of onchocerciasis with ivermectin in an area endemic for Loa loa infection. Lancet. 1997;350(9070):18–22. Epub 1997/07/05. .
    1. Weil GJ, Curtis KC, Fakoli L, Fischer K, Gankpala L, Lammie PJ, et al. Laboratory and field evaluation of a new rapid test for detecting Wuchereria bancrofti antigen in human blood. Am J Trop Med Hyg. 2013;89(1):11–5. Epub 2013/05/22. .
    1. Weil GJ, Lammie PJ, Weiss N. The ICT Filariasis Test: A rapid-format antigen test for diagnosis of bancroftian filariasis. Parasitol Today. 1997;13(10):401–4. .
    1. Weil GJ, Liftis F. Identification and partial characterization of a parasite antigen in sera from humans infected with Wuchereria bancrofti. J Immunol. 1987;138(9):3035–41. .
    1. Weil GJ, Jain DC, Santhanam S, Malhotra A, Kumar H, Sethumadhavan KV, et al. A monoclonal antibody-based enzyme immunoassay for detecting parasite antigenemia in bancroftian filariasis. J Infect Dis. 1987;156(2):350–5. Epub 1987/08/01. .
    1. Bakajika DK, Nigo MM, Lotsima JP, Masikini GA, Fischer K, Lloyd MM, et al. Filarial antigenemia and Loa loa night blood microfilaremia in an area without bancroftian filariasis in the Democratic Republic of Congo. Am J Trop Med Hyg. 2014;91(6):1142–8. .
    1. Wanji S, Amvongo-Adjia N, Koudou B, Njouendou AJ, Chounna Ndongmo PW, Kengne-Ouafo JA, et al. Cross-Reactivity of Filariais ICT Cards in Areas of Contrasting Endemicity of Loa loa and Mansonella perstans in Cameroon: Implications for Shrinking of the Lymphatic Filariasis Map in the Central African Region. PLoS neglected tropical diseases. 2015;9(11):e0004184 .
    1. Pion SD, Montavon C, Chesnais CB, Kamgno J, Wanji S, Klion AD, et al. Positivity of Antigen Tests Used for Diagnosis of Lymphatic Filariasis in Individuals Without Wuchereria bancrofti Infection But with High Loa loa Microfilaremia. Am J Trop Med Hyg. 2016;95(6):1417–23. .
    1. Rao RU, Atkinson LJ, Ramzy RM, Helmy H, Farid HA, Bockarie MJ, et al. A real-time PCR-based assay for detection of Wuchereria bancrofti DNA in blood and mosquitoes. Am J Trop Med Hyg. 2006;74(5):826–32. Epub 2006/05/12. .
    1. Ismail MM, Weil GJ, Jayasinghe KS, Premaratne UN, Abeyewickreme W, Rajaratnam HN, et al. Prolonged clearance of microfilaraemia in patients with bancroftian filariasis after multiple high doses of ivermectin or diethylcarbamazine. Trans R Soc Trop Med Hyg. 1996;90(6):684–8. Epub 1996/11/01. .
    1. Thomsen EK, Sanuku N, Baea M, Satofan S, Maki E, Lombore B, et al. Efficacy, Safety, and Pharmacokinetics of Coadministered Diethylcarbamazine, Albendazole, and Ivermectin for Treatment of Bancroftian Filariasis. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2016;62(3):334–41. Epub 2015/10/22. .
    1. Gass K, Beau de Rochars MV, Boakye D, Bradley M, Fischer PU, Gyapong J, et al. A multicenter evaluation of diagnostic tools to define endpoints for programs to eliminate bancroftian filariasis. PLoS Negl Trop Dis. 2012;6(1):e1479 Epub 2012/01/25. .
    1. Fink DL, Kamgno J, Nutman TB. Rapid molecular assays for specific detection and quantitation of Loa loa microfilaremia. PLoS Negl Trop Dis. 2011;5(8):e1299 Epub 2011/09/14. .
    1. Wanji S, Amvongo-Adjia N, Njouendou AJ, Kengne-Ouafo JA, Ndongmo WP, Fombad FF, et al. Further evidence of the cross-reactivity of the Binax NOW(R) Filariasis ICT cards to non-Wuchereria bancrofti filariae: experimental studies with Loa loa and Onchocerca ochengi. Parasit Vectors. 2016;9:267 Epub 2016/05/07. .
    1. Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nature methods. 2009;6(5):359–62. .
    1. Tallon LJ, Liu X, Bennuru S, Chibucos MC, Godinez A, Ott S, et al. Single molecule sequencing and genome assembly of a clinical specimen of Loa loa, the causative agent of loiasis. BMC Genomics. 2014;15:788 Epub 2014/09/14. .
    1. Desjardins CA, Cerqueira GC, Goldberg JM, Dunning Hotopp JC, Haas BJ, Zucker J, et al. Genomics of Loa loa, a Wolbachia-free filarial parasite of humans. Nat Genet. 2013;45(5):495–500. Epub 2013/03/26. .
    1. Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36(10):3420–35. Epub 2008/05/01. .
    1. Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 2013;32(10):1478–88. Epub 2013/04/16. .
    1. Gupta R, Jung E, Brunak S. Prediction of N-glycosylation sites in human proteins. 2004.
    1. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature methods. 2011;8(10):785–6. Epub 2011/10/01. .
    1. Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel. 2004;17(4):349–56. Epub 2004/04/30. .
    1. Nana-Djeunga HC, Tchatchueng-Mbougua JB, Bopda J, Mbickmen-Tchana S, Elong-Kana N, Nnomzo’o E, et al. Mapping of Bancroftian Filariasis in Cameroon: Prospects for Elimination. PLoS Negl Trop Dis. 2015;9(9):e0004001 Epub 2015/09/10.
    1. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6. Epub 2005/08/06. .
    1. Hewitson JP, Harcus YM, Curwen RS, Dowle AA, Atmadja AK, Ashton PD, et al. The secretome of the filarial parasite, Brugia malayi: proteomic profile of adult excretory-secretory products. Mol Biochem Parasitol. 2008;160(1):8–21. Epub 2008/04/29. .
    1. Moreno Y, Geary TG. Stage- and gender-specific proteomic analysis of Brugia malayi excretory-secretory products. PLoS Negl Trop Dis. 2008;2(10):e326 Epub 2008/10/30. .
    1. Bennuru S, Semnani R, Meng Z, Ribeiro JM, Veenstra TD, Nutman TB. Brugia malayi excreted/secreted proteins at the host/parasite interface: stage- and gender-specific proteomic profiling. PLoS Negl Trop Dis. 2009;3(4):e410 Epub 2009/04/09. .
    1. Bennuru S, Meng Z, Ribeiro JM, Semnani RT, Ghedin E, Chan K, et al. Stage-specific proteomic expression patterns of the human filarial parasite Brugia malayi and its endosymbiont Wolbachia. Proc Natl Acad Sci U S A. 2011;108(23):9649–54. Epub 2011/05/25. .
    1. WHO. Preventive chemotherapy in human helminthiasis: coordinated use of anthelminthic drugs in control interventions: a manual for health professionals and programme managers. Geneva, Switzerland: WHO Press; 2006.
    1. Chanteau S, Moulia-Pelat JP, Glaziou P, Nguyen NL, Luquiaud P, Plichart C, et al. Og4C3 circulating antigen: a marker of infection and adult worm burden in Wuchereria bancrofti filariasis. J Infect Dis. 1994;170(1):247–50. Epub 1994/07/01. .
    1. Jaoko WG. Loa loa antigen detection by ELISA: a new approach to diagnosis. East Afr Med J. 1995;72(3):176–9. Epub 1995/03/01. .
    1. Walker-Deemin A, Kombila M, Mouray H, Rondi ML, Nguiri C, Richard-Lenoble D. Detection of circulating antigens in Gabonese patients with Loa loa filariasis. Trop Med Int Health. 1996;1(6):772–8. Epub 1996/12/01. .
    1. Walker-Deemin A, Ferrer A, Gauthier F, Kombila M, Richard-Lenoble D. Identification and specificity of a 38 kDa Loa loa antigenic fraction in sera from high-microfilaraemic Gabonese patients. Parasitol Res. 2004;92(2):128–32. Epub 2003/12/03. .
    1. Drame PM, Meng Z, Bennuru S, Herrick JA, Veenstra TD, Nutman TB. Identification and Validation of Loa loa Microfilaria-Specific Biomarkers: a Rational Design Approach Using Proteomics and Novel Immunoassays. MBio. 2016;7(1):e02132–15. Epub 2016/02/18. .

Source: PubMed

3
Iratkozz fel