Treatment response of colorectal cancer liver metastases to neoadjuvant or conversion therapy: a prospective multicentre follow-up study using MRI, diffusion-weighted imaging and 1H-MR spectroscopy compared with histology (subgroup in the RAXO trial)

A Uutela, A Ovissi, A Hakkarainen, A Ristimäki, N Lundbom, R Kallio, L M Soveri, T Salminen, A Ålgars, P Halonen, R Ristamäki, A Nordin, R Blanco Sequeiros, I Rinta-Kiikka, E Lantto, J Virtanen, E Pääkkö, E Liukkonen, J Saunavaara, P Ryymin, E Lammentausta, P Osterlund, H Isoniemi, RAXO Study Group, Heikki Mäkisalo, Riikka Huuhtanen, Juhani Kosunen, Sirpa Leppä, Petri Bono, Johanna Mattson, Emerik Österlund, Heidi Penttinen, Siru Mäkelä, Olli Carpén, Marjut Timonen, Kaisa Lehtomäki, Veera Salminen, Niina Paunu, Martine Vornanen, Nieminen Lasse, Eetu Heervä, Eija Korkeila, Eija Sutinen, Maija Lavonius, Jari Sundström, Markus Mäkinen, Tuija Poussa, A Uutela, A Ovissi, A Hakkarainen, A Ristimäki, N Lundbom, R Kallio, L M Soveri, T Salminen, A Ålgars, P Halonen, R Ristamäki, A Nordin, R Blanco Sequeiros, I Rinta-Kiikka, E Lantto, J Virtanen, E Pääkkö, E Liukkonen, J Saunavaara, P Ryymin, E Lammentausta, P Osterlund, H Isoniemi, RAXO Study Group, Heikki Mäkisalo, Riikka Huuhtanen, Juhani Kosunen, Sirpa Leppä, Petri Bono, Johanna Mattson, Emerik Österlund, Heidi Penttinen, Siru Mäkelä, Olli Carpén, Marjut Timonen, Kaisa Lehtomäki, Veera Salminen, Niina Paunu, Martine Vornanen, Nieminen Lasse, Eetu Heervä, Eija Korkeila, Eija Sutinen, Maija Lavonius, Jari Sundström, Markus Mäkinen, Tuija Poussa

Abstract

Background: Colorectal cancer liver metastases respond to chemotherapy and targeted agents not only by shrinking, but also by morphologic and metabolic changes. The aim of this study was to evaluate the value of advanced magnetic resonance imaging (MRI) methods in predicting treatment response and survival.

Patients and methods: We investigated contrast-enhanced MRI, apparent diffusion coefficient (ADC) in diffusion-weighted imaging and 1H-magnetic resonance spectroscopy (1H-MRS) in detecting early morphologic and metabolic changes in borderline or resectable liver metastases, as a response to first-line neoadjuvant or conversion therapy in a prospective substudy of the RAXO trial (NCT01531621, EudraCT2011-003158-24). MRI findings were compared with histology of resected liver metastases and Kaplan-Meier estimates of overall survival (OS).

Results: In 2012-2018, 52 patients at four Finnish university hospitals were recruited. Forty-seven patients received neoadjuvant or conversion chemotherapy and 40 liver resections were carried out. Low ADC values (below median) of the representative liver metastases, at baseline and after systemic therapy, were associated with partial response according to RECIST criteria, but not with morphologic MRI changes or histology. Decreasing ADC values following systemic therapy were associated with improved OS compared to unchanged or increasing ADC, both in the liver resected subgroup (5-year OS rate 100% and 34%, respectively, P = 0.022) and systemic therapy subgroup (5-year OS rate 62% and 23%, P = 0.049). 1H-MRS revealed steatohepatosis induced by systemic therapy.

Conclusions: Low ADC values at baseline or during systemic therapy were associated with treatment response by RECIST but not with histology, morphologic or detectable metabolic changes. A decreasing ADC during systemic therapy is associated with improved OS both in all patients receiving systemic therapy and in the resected subgroup.

Keywords: colorectal cancer; diffusion-weighted imaging; liver metastasis; liver surgery; magnetic resonance spectroscopy; neoadjuvant chemotherapy.

Conflict of interest statement

Disclosure AU, AIH, AO, AR, NL, RK, L-MS, TKS, PMH, RHR, AN, RBS, IR-K, EL, JV, EP, PO, AÅ, EL, JS, PR, EL and HMI have received travel grants and/or honoraria from the following pharmaceutical companies: Amgen, Bayer, BMS, Celgene, Erytech Pharma, Janssen-Cilag, Lilly, Merck, MSD, Nordic Drugs, Roche, Sanofi, Servier/Shire, Sobi, Pierre Fabre and Varian.

Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.

Figures

Figure 1
Figure 1
Contrast-enhanced magnetic resonance imaging (MRI) and diffusion-weighted imaging. A gadolinium-enhanced T1 volumetric interpolated breath-hold examination (VIBE) MRI of a liver metastasis before (A) and after (B) chemotherapy. The corresponding apparent diffusion coefficient (ADC) maps calculated from diffusion-weighted images (DWI) of the same tumour before (C) and after systemic therapy (D). Red area and arrow: whole tumour area. Yellow area and arrow: the postulated active tumour area (ADC periphery, the C-formed rim in image C).
Figure 2
Figure 2
Tumour vitality (TV), tumour regression grade (TRG) and modified tumour regression grade (mTRG) after neoadjuvant or conversion therapy. (A) No vital tumour cells, fibrosis and infarct-like necrosis, TV 0%, TRG1, mTRG1. (B) A small area of vital tumour cells surrounded by large areas of relatively clean (infarct-like) necrosis, TV 10%, TRG2, mTRG2. (C) Larger areas of vital tumour cells bordered by vital stroma and areas of ‘dirty’ (usual) necrosis, with infarct-like necrosis elsewhere in the slide (not shown), TV 30%, TRG3, mTRG3. (D) Mostly vital tumour, with little fibrosis and necrosis, TV 70%, TRG4, mTRG4.
Figure 3
Figure 3
Overall survival in patients whose liver metastases show a reduction versus increase or no change in the ADC after chemotherapy. (A) Resected patients. (B) All patients treated with neoadjuvant or conversion therapy. ADC, apparent diffusion coefficient; CI, confidence interval; HR, hazard ratio; mCRC, metastatic colorectal cancer.

References

    1. Hackl C., Neumann P., Gerken M., Loss M., Klinkhammer-Schalke M., Schlitt H.J. Treatment of colorectal liver metastases in Germany: a ten-year population-based analysis of 5772 cases of primary colorectal adenocarcinoma. BMC Cancer. 2014;14:810.
    1. Vayrynen V., Wirta E.V., Seppala T. Incidence and management of patients with colorectal cancer and synchronous and metachronous colorectal metastases: a population-based study. BJS Open. 2020;4(4):685–692.
    1. Scherman P., Syk I., Holmberg E., Naredi P., Rizell M. Influence of primary tumour and patient factors on survival in patients undergoing curative resection and treatment for liver metastases from colorectal cancer. BJS Open. 2020;4(1):118–132.
    1. Adam R., Kitano Y. Multidisciplinary approach of liver metastases from colorectal cancer. Ann Gastroenterol Surg. 2019;3(1):50–56.
    1. Lam V.W., Spiro C., Laurence J.M. A systematic review of clinical response and survival outcomes of downsizing systemic chemotherapy and rescue liver surgery in patients with initially unresectable colorectal liver metastases. Ann Surg Oncol. 2012;19(4):1292–1301.
    1. Van Cutsem E., Cervantes A., Adam R. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;27(8):1386–1422.
    1. Benson A., Venook A. National Comprehensive Cancer Network; 2020. NCCN Guidelines for Colon Cancer. Available at.
    1. Benson A.B., Venook A. National Comprehensive Cancer Network; 2020. NCCN Guidelines for Rectal Cancer. Available at.
    1. Weledji E.P. Centralization of liver cancer surgery and impact on multidisciplinary teams working on stage IV colorectal cancer. Oncol Rev. 2017;11(2):331.
    1. Fraum T.J., Owen J.W., Fowler K.J. Beyond histologic staging: emerging imaging strategies in colorectal cancer with special focus on magnetic resonance imaging. Clin Colon Rectal Surg. 2016;29(3):205–215.
    1. Koh D.M., Scurr E., Collins D. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol. 2007;188(4):1001–1008.
    1. Luna A., Pahwa S., Bonini C., Alcalá-Mata L., Wright K.L., Gulani V. Multiparametric MR imaging in abdominal malignancies. Magn Reson Imaging Clin N Am. 2016;24(1):157–186.
    1. Lewis S., Dyvorne H., Cui Y., Taouli B. Diffusion-weighted imaging of the liver: techniques and applications. Magn Reson Imaging Clin N Am. 2014;22(3):373–395.
    1. Eisenhauer E.A., Therasse P., Bogaerts J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45(2):228–247.
    1. Schwartz L.H., Litiere S., de Vries E. RECIST 1.1-update and clarification: from the RECIST committee. Eur J Cancer. 2016;62:132–137.
    1. Chun Y.S., Vauthey J.N., Boonsirikamchai P. Association of computed tomography morphologic criteria with pathologic response and survival in patients treated with bevacizumab for colorectal liver metastases. J Am Med Assoc. 2009;302(21):2338–2344.
    1. Hirashima Y., Yamada Y., Tateishi U. Pharmacokinetic parameters from 3-Tesla DCE-MRI as surrogate biomarkers of antitumor effects of bevacizumab plus FOLFIRI in colorectal cancer with liver metastasis. Int J Cancer. 2012;130(10):2359–2365.
    1. Anzidei M., Napoli A., Zaccagna F. Liver metastases from colorectal cancer treated with conventional and antiangiogenetic chemotherapy: evaluation with liver computed tomography perfusion and magnetic resonance diffusion-weighted imaging. J Comput Assist Tomogr. 2011;35(6):690–696.
    1. De Bruyne S., Van Damme N., Smeets P. Value of DCE-MRI and FDG-PET/CT in the prediction of response to preoperative chemotherapy with bevacizumab for colorectal liver metastases. Br J Cancer. 2012;106(12):1926–1933.
    1. Karlas T., Petroff D., Garnov N. Non-invasive assessment of hepatic steatosis in patients with NAFLD using controlled attenuation parameter and 1H-MR spectroscopy. PLoS One. 2014;9(3):e91987.
    1. Osterlund P., Salminen T., Soveri L.M. Repeated centralized multidisciplinary team assessment of resectability, clinical behavior, and outcomes in 1086 Finnish metastatic colorectal cancer patients (RAXO): a nationwide prospective intervention study. Lancet Reg Health Eur. 2021;3:100049. doi: 10.1016/j.lanepe.2021.100049.
    1. Isoniemi H., Uutela A., Nordin A. Centralized repeated resectability assessment of patients with colorectal liver metastases during first-line treatment: prospective study. Br J Surg. 2021 doi: 10.1093/bjs/znaa145.
    1. Fischbach F., Schirmer T., Thormann M., Freund T., Ricke J., Bruhn H. Quantitative proton magnetic resonance spectroscopy of the normal liver and malignant hepatic lesions at 3.0 Tesla. Eur Radiol. 2008;18(11):2549–2558.
    1. Reeder S.B., Cruite I., Hamilton G., Sirlin C.B. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging. 2011;34(4):729–749.
    1. Kotronen A., Peltonen M., Hakkarainen A. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology. 2009;137(3):865–872.
    1. Rubbia-Brandt L., Giostra E., Brezault C. Importance of histological tumor response assessment in predicting the outcome in patients with colorectal liver metastases treated with neo-adjuvant chemotherapy followed by liver surgery. Ann Oncol. 2007;18(2):299–304.
    1. Chang H.H., Leeper W.R., Chan G., Quan D., Driman D.K. Infarct-like necrosis: a distinct form of necrosis seen in colorectal carcinoma liver metastases treated with perioperative chemotherapy. Am J Surg Pathol. 2012;36(4):570–576.
    1. Ishida K., Uesugi N., Hasegawa Y. Proposal for novel histological findings of colorectal liver metastases with preoperative chemotherapy. Pathol Int. 2015;65(7):367–373.
    1. Nordlinger B., Sorbye H., Glimelius B. Perioperative FOLFOX4 chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): long-term results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2013;14(12):1208–1215.
    1. Cui Y., Zhang X.P., Sun Y.S., Tang L., Shen L. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology. 2008;248(3):894–900.
    1. Fouladi D.F., Zarghampour M., Pandey P. Baseline 3D-ADC outperforms 2D-ADC in predicting response to treatment in patients with colorectal liver metastases. Eur Radiol. 2020;30(1):291–300.
    1. Liang H.Y., Huang Y.Q., Yang Z.X. Potential of MR histogram analyses for prediction of response to chemotherapy in patients with colorectal hepatic metastases. Eur Radiol. 2016;26(7):2009–2018.
    1. Drewes R., Pech M., Powerski M. Apparent diffusion coefficient can predict response to chemotherapy of liver metastases in colorectal cancer. Acad Radiol. 2020 doi: 10.1016/j.acra.2020.09.006.
    1. Tam H.H., Collins D.J., Brown G. The role of pre-treatment diffusion-weighted MRI in predicting long-term outcome of colorectal liver metastasis. Br J Radiol. 2013;86(1030):20130281.
    1. Heijmen L., ter Voert E.E., Oyen W.J. Multimodality imaging to predict response to systemic treatment in patients with advanced colorectal cancer. PLoS One. 2015;10(4):e0120823.
    1. Dzik-Jurasz A., Domenig C., George M. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet. 2002;360(9329):307–308.
    1. Shin M.K., Song J.S., Hwang S.B., Hwang H.P., Kim Y.J., Moon W.S. Liver fibrosis assessment with diffusion-weighted imaging: value of liver apparent diffusion coefficient normalization using the spleen as a reference organ. Diagnostics (Basel) 2019;9(3):107.
    1. Granata V., Fusco R., Catalano O. Early assessment of colorectal cancer patients with liver metastases treated with antiangiogenic drugs: the role of intravoxel incoherent motion in diffusion-weighted imaging. PLoS One. 2015;10(11):e0142876.
    1. Kim J.H., Joo I., Kim T.Y., Han S.-W., Kim Y.J., Lee J.M., Han J.K. Diffusion-related MRI parameters for assessing early treatment response of liver metastases to cytotoxic therapy in colorectal cancer. AJR Am J Roentgenol. 2016;207(3):W26–W32.
    1. Chiaradia M., Baranes L., Van Nhieu J.T. Intravoxel incoherent motion (IVIM) MR imaging of colorectal liver metastases: are we only looking at tumor necrosis? J Magn Reson Imaging. 2014;39(2):317–325.
    1. Donati F., Boraschi P., Pacciardi F. 3T diffusion-weighted MRI in the response assessment of colorectal liver metastases after chemotherapy: correlation between ADC value and histological tumour regression grading. Eur J Radiol. 2017;91:57–65.
    1. Wagner M., Ronot M., Doblas S. Assessment of the residual tumour of colorectal liver metastases after chemotherapy: diffusion-weighted MR magnetic resonance imaging in the peripheral and entire tumour. Eur Radiol. 2016;26(1):206–215.
    1. Dunet V., Halkic N., Prior J.O. Detection and viability of colorectal liver metastases after neoadjuvant chemotherapy: a multiparametric PET/CT-MRI study. Clin Nucl Med. 2017;42(4):258–263.
    1. Granata V., Fusco R., Avallone A. A radiologist's point of view in the presurgical and intraoperative setting of colorectal liver metastases. Future Oncol. 2018;14(21):2189–2206.
    1. Ter Voert E., Heijmen L., van Asten J.J.A. Levels of choline-containing compounds in normal liver and liver metastases of colorectal cancer as recorded by (1) H MRS. NMR Biomed. 2019;32(1):e4035.
    1. Kim J.W., Lee Y.S., Park Y.S. Multiparametric MR index for the diagnosis of non-alcoholic steatohepatitis in patients with non-alcoholic fatty liver disease. Sci Rep. 2020;10(1):2671.
    1. Duwe G., Knitter S., Pesthy S. Hepatotoxicity following systemic therapy for colorectal liver metastases and the impact of chemotherapy-associated liver injury on outcomes after curative liver resection. Eur J Surg Oncol. 2017;43(9):1668–1681.
    1. Sebagh M., Allard M.A., Bosselut N. Evidence of intermetastatic heterogeneity for pathological response and genetic mutations within colorectal liver metastases following preoperative chemotherapy. Oncotarget. 2016;7(16):21591–21600.

Source: PubMed

3
Iratkozz fel