Diverse novel functions of neutrophils in immunity, inflammation, and beyond

Attila Mócsai, Attila Mócsai

Abstract

Neutrophils have long been considered simple suicide killers at the bottom of the hierarchy of the immune response. That view began to change 10-20 yr ago, when the sophisticated mechanisms behind how neutrophils locate and eliminate pathogens and regulate immunity and inflammation were discovered. The last few years witnessed a new wave of discoveries about additional novel and unexpected functions of these cells. Neutrophils have been proposed to participate in protection against intracellular pathogens such as viruses and mycobacteria. They have been shown to intimately shape the adaptive immune response at various levels, including marginal zone B cells, plasmacytoid dendritic cells and T cell populations, and even to control NK cell homeostasis. Neutrophils have been shown to mediate an alternative pathway of systemic anaphylaxis and to participate in allergic skin reactions. Finally, neutrophils were found to be involved in physiological and pathological processes beyond the immune system, such as diabetes, atherosclerosis, and thrombus formation. Many of those functions appear to be related to their unique ability to release neutrophil extracellular traps even in the absence of pathogens. This review summarizes those novel findings on versatile functions of neutrophils and how they change our view of neutrophil biology in health and disease.

Figures

Figure 1.
Figure 1.
Neutrophil functions: state of the art in the early 2000s. After migrating to the site of inflammation, neutrophils (PMN) phagocytose and digest the invading microbes; release NETs, which likely trap bacteria; and produce cytokines, which contribute to the inflammatory reaction. Once infection is cleared, neutrophils die by apoptosis and trigger an active program to resolve inflammation. Inset, pathogen killing inside the phagosome occurs by ROS generated by the NADPH oxidase, as well as by granule enzymes released from intracellular granules. The NADPH oxidase also induces depolarization of the phagosomal membrane, which may be required for providing optimal environment inside the phagosome.
Figure 2.
Figure 2.
Novel interactions of neutrophils with other immune cells. (A) Neutrophils (PMN) accumulate in the splenic marginal zone upon microbial challenge and facilitate the antibody production and maturation of marginal zone B cells (MZB) in response to T cell–independent (TI) antigens. (B) Neutrophils participate in a vicious cycle during autoimmune disease (e.g., SLE) pathogenesis by releasing NETs that trigger pDCs to release IFN-α, which then promotes antibody production by B cells (B). (C) Neutrophils may directly present antigens to T cells (T) and they also activate DCs and deliver antigens to them. (D) Neutrophils and DCs jointly activate NK cells (NK).
Figure 3.
Figure 3.
Novel functions of neutrophils in vascular diseases. (A) Neutrophils (PMN) mediate an alternative pathway of anaphylactic reaction which is distinct from the classical pathway mediated by mast cells or basophils. (B) Sequential recruitment of platelets, neutrophils, and monocytes (Mono) participates in the pathogenesis of atherosclerosis. (C) Neutrophils contribute to coagulation and thrombosis by releasing tissue factor and inhibitors of the tissue factor pathway inhibitor (TFPI), as well as the procoagulant NETs.

References

    1. Abadie V., Badell E., Douillard P., Ensergueix D., Leenen P.J., Tanguy M., Fiette L., Saeland S., Gicquel B., Winter N. 2005. Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood. 106:1843–1850 10.1182/blood-2005-03-1281
    1. Abi Abdallah D.S., Egan C.E., Butcher B.A., Denkers E.Y. 2011. Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Int. Immunol. 23:317–326 10.1093/intimm/dxr007
    1. Amulic B., Cazalet C., Hayes G.L., Metzler K.D., Zychlinsky A. 2012. Neutrophil function: from mechanisms to disease. Annu. Rev. Immunol. 30:459–489 10.1146/annurev-immunol-020711-074942
    1. Appelberg R. 2007. Neutrophils and intracellular pathogens: beyond phagocytosis and killing. Trends Microbiol. 15:87–92 10.1016/j.tim.2006.11.009
    1. Ariel A., Fredman G., Sun Y.P., Kantarci A., Van Dyke T.E., Luster A.D., Serhan C.N. 2006. Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression. Nat. Immunol. 7:1209–1216 10.1038/ni1392
    1. Ashtekar A.R., Saha B. 2003. Poly’s plea: membership to the club of APCs. Trends Immunol. 24:485–490 10.1016/S1471-4906(03)00235-7
    1. Balázs M., Martin F., Zhou T., Kearney J. 2002. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity. 17:341–352 10.1016/S1074-7613(02)00389-8
    1. Båve U., Magnusson M., Eloranta M.L., Perers A., Alm G.V., Rönnblom L. 2003. Fc γ RIIa is expressed on natural IFN-α-producing cells (plasmacytoid dendritic cells) and is required for the IFN-α production induced by apoptotic cells combined with lupus IgG. J. Immunol. 171:3296–3302
    1. Bazzoni F., Cassatella M.A., Laudanna C., Rossi F. 1991a. Phagocytosis of opsonized yeast induces tumor necrosis factor-α mRNA accumulation and protein release by human polymorphonuclear leukocytes. J. Leukoc. Biol. 50:223–228
    1. Bazzoni F., Cassatella M.A., Rossi F., Ceska M., Dewald B., Baggiolini M. 1991b. Phagocytosing neutrophils produce and release high amounts of the neutrophil-activating peptide 1/interleukin 8. J. Exp. Med. 173:771–774 10.1084/jem.173.3.771
    1. Beauvillain C., Delneste Y., Scotet M., Peres A., Gascan H., Guermonprez P., Barnaba V., Jeannin P. 2007. Neutrophils efficiently cross-prime naive T cells in vivo. Blood. 110:2965–2973 10.1182/blood-2006-12-063826
    1. Beauvillain C., Cunin P., Doni A., Scotet M., Jaillon S., Loiry M.L., Magistrelli G., Masternak K., Chevailler A., Delneste Y., Jeannin P. 2011. CCR7 is involved in the migration of neutrophils to lymph nodes. Blood. 117:1196–1204 10.1182/blood-2009-11-254490
    1. Bennett L., Palucka A.K., Arce E., Cantrell V., Borvak J., Banchereau J., Pascual V. 2003. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197:711–723 10.1084/jem.20021553
    1. Bennouna S., Denkers E.Y. 2005. Microbial antigen triggers rapid mobilization of TNF-alpha to the surface of mouse neutrophils transforming them into inducers of high-level dendritic cell TNF-alpha production. J. Immunol. 174:4845–4851
    1. Bennouna S., Bliss S.K., Curiel T.J., Denkers E.Y. 2003. Cross-talk in the innate immune system: neutrophils instruct recruitment and activation of dendritic cells during microbial infection. J. Immunol. 171:6052–6058
    1. Berry M.P., Graham C.M., McNab F.W., Xu Z., Bloch S.A., Oni T., Wilkinson K.A., Banchereau R., Skinner J., Wilkinson R.J., et al. 2010. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature. 466:973–977 10.1038/nature09247
    1. Borregaard N. 2010. Neutrophils, from marrow to microbes. Immunity. 33:657–670 10.1016/j.immuni.2010.11.011
    1. Borregaard N., Sørensen O.E., Theilgaard-Mönch K. 2007. Neutrophil granules: a library of innate immunity proteins. Trends Immunol. 28:340–345 10.1016/j.it.2007.06.002
    1. Boudaly S. 2009. Activation of dendritic cells by polymorphonuclear neutrophils. Front. Biosci. 14:1589–1595 10.2741/3326
    1. Bratton D.L., Henson P.M. 2011. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol. 32:350–357 10.1016/j.it.2011.04.009
    1. Braunersreuther V., Zernecke A., Arnaud C., Liehn E.A., Steffens S., Shagdarsuren E., Bidzhekov K., Burger F., Pelli G., Luckow B., et al. 2007. Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 27:373–379 10.1161/
    1. Brill A., Fuchs T.A., Savchenko A.S., Thomas G.M., Martinod K., De Meyer S.F., Bhandari A.A., Wagner D.D. 2012. Neutrophil extracellular traps promote deep vein thrombosis in mice. J. Thromb. Haemost. 10:136–144 10.1111/j.1538-7836.2011.04544.x
    1. Brinkmann V., Zychlinsky A. 2012. Neutrophil extracellular traps: is immunity the second function of chromatin? J. Cell Biol. 198:773–783 10.1083/jcb.201203170
    1. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. 2004. Neutrophil extracellular traps kill bacteria. Science. 303:1532–1535 10.1126/science.1092385
    1. Bruhns P. 2012. Properties of mouse and human IgG receptors and their contribution to disease models. Blood. 119:5640–5649 10.1182/blood-2012-01-380121
    1. Campbell A.M., Kashgarian M., Shlomchik M.J. 2012. NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci. Transl. Med. 4:157ra141 10.1126/scitranslmed.3004801
    1. Cassatella M.A. 1995. The production of cytokines by polymorphonuclear neutrophils. Immunol. Today. 16:21–26 10.1016/0167-5699(95)80066-2
    1. Charmoy M., Brunner-Agten S., Aebischer D., Auderset F., Launois P., Milon G., Proudfoot A.E., Tacchini-Cottier F. 2010. Neutrophil-derived CCL3 is essential for the rapid recruitment of dendritic cells to the site of Leishmania major inoculation in resistant mice. PLoS Pathog. 6:e1000755 10.1371/journal.ppat.1000755
    1. Chen K., Nishi H., Travers R., Tsuboi N., Martinod K., Wagner D.D., Stan R., Croce K., Mayadas T.N. 2012. Endocytosis of soluble immune complexes leads to their clearance by FcγRIIIB but induces neutrophil extracellular traps via FcγRIIA in vivo. Blood. 120:4421–4431 10.1182/blood-2011-12-401133
    1. Collins R.G., Velji R., Guevara N.V., Hicks M.J., Chan L., Beaudet A.L. 2000. P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J. Exp. Med. 191:189–194 10.1084/jem.191.1.189
    1. Costantini C., Cassatella M.A. 2011. The defensive alliance between neutrophils and NK cells as a novel arm of innate immunity. J. Leukoc. Biol. 89:221–233 10.1189/jlb.0510250
    1. Costantini C., Calzetti F., Perbellini O., Micheletti A., Scarponi C., Lonardi S., Pelletier M., Schakel K., Pizzolo G., Facchetti F., et al. 2011. Human neutrophils interact with both 6-sulfo LacNAc+ DC and NK cells to amplify NK-derived IFNγ: role of CD18, ICAM-1, and ICAM-3. Blood. 117:1677–1686 10.1182/blood-2010-06-287243
    1. Cruz A., Fraga A.G., Fountain J.J., Rangel-Moreno J., Torrado E., Saraiva M., Pereira D.R., Randall T.D., Pedrosa J., Cooper A.M., Castro A.G. 2010. Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis. J. Exp. Med. 207:1609–1616 10.1084/jem.20100265
    1. Daley J.M., Thomay A.A., Connolly M.D., Reichner J.S., Albina J.E. 2008. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J. Leukoc. Biol. 83:64–70 10.1189/jlb.0407247
    1. Darbousset R., Thomas G.M., Mezouar S., Frère C., Bonier R., Mackman N., Renné T., Dignat-George F., Dubois C., Panicot-Dubois L. 2012. Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood. 120:2133–2143 10.1182/blood-2012-06-437772
    1. Davey M.S., Tamassia N., Rossato M., Bazzoni F., Calzetti F., Bruderek K., Sironi M., Zimmer L., Bottazzi B., Mantovani A., et al. 2011. Failure to detect production of IL-10 by activated human neutrophils. Nat. Immunol. 12:1017–1018, author reply :1018–1020 10.1038/ni.2111
    1. De Santo C., Arscott R., Booth S., Karydis I., Jones M., Asher R., Salio M., Middleton M., Cerundolo V. 2010. Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat. Immunol. 11:1039–1046 10.1038/ni.1942
    1. Demers M., Krause D.S., Schatzberg D., Martinod K., Voorhees J.R., Fuchs T.A., Scadden D.T., Wagner D.D. 2012. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc. Natl. Acad. Sci. USA. 109:13076–13081 10.1073/pnas.1200419109
    1. Diana J., Simoni Y., Furio L., Beaudoin L., Agerberth B., Barrat F., Lehuen A. 2013. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat. Med. 19:65–73 10.1038/nm.3042
    1. Dilulio N.A., Engeman T., Armstrong D., Tannenbaum C., Hamilton T.A., Fairchild R.L. 1999. Groalpha-mediated recruitment of neutrophils is required for elicitation of contact hypersensitivity. Eur. J. Immunol. 29:3485–3495
    1. Döring Y., Drechsler M., Wantha S., Kemmerich K., Lievens D., Vijayan S., Gallo R.L., Weber C., Soehnlein O. 2012a. Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice. Circ. Res. 110:1052–1056 10.1161/CIRCRESAHA.112.265868
    1. Döring Y., Manthey H.D., Drechsler M., Lievens D., Megens R.T., Soehnlein O., Busch M., Manca M., Koenen R.R., Pelisek J., et al. 2012b. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation. 125:1673–1683 10.1161/CIRCULATIONAHA.111.046755
    1. Drechsler M., Megens R.T., van Zandvoort M., Weber C., Soehnlein O. 2010. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation. 122:1837–1845 10.1161/CIRCULATIONAHA.110.961714
    1. Duffy D., Perrin H., Abadie V., Benhabiles N., Boissonnas A., Liard C., Descours B., Reboulleau D., Bonduelle O., Verrier B., et al. 2012. Neutrophils transport antigen from the dermis to the bone marrow, initiating a source of memory CD8+ T cells. Immunity. 37:917–929 10.1016/j.immuni.2012.07.015
    1. Dzhagalov I., St John A., He Y.W. 2007. The antiapoptotic protein Mcl-1 is essential for the survival of neutrophils but not macrophages. Blood. 109:1620–1626 10.1182/blood-2006-03-013771
    1. El Kebir D., Filep J.G. 2010. Role of neutrophil apoptosis in the resolution of inflammation. ScientificWorldJournal. 10:1731–1748 10.1100/tsw.2010.169
    1. Elgazar-Carmon V., Rudich A., Hadad N., Levy R. 2008. Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J. Lipid Res. 49:1894–1903 10.1194/jlr.M800132-JLR200
    1. Esmon C.T. 2004. Interactions between the innate immune and blood coagulation systems. Trends Immunol. 25:536–542 10.1016/j.it.2004.08.003
    1. Essin K., Gollasch M., Rolle S., Weissgerber P., Sausbier M., Bohn E., Autenrieth I.B., Ruth P., Luft F.C., Nauseef W.M., Kettritz R. 2009. BK channels in innate immune functions of neutrophils and macrophages. Blood. 113:1326–1331 10.1182/blood-2008-07-166660
    1. Femling J.K., Cherny V.V., Morgan D., Rada B., Davis A.P., Czirják G., Enyedi P., England S.K., Moreland J.G., Ligeti E., et al. 2006. The antibacterial activity of human neutrophils and eosinophils requires proton channels but not BK channels. J. Gen. Physiol. 127:659–672 10.1085/jgp.200609504
    1. Finkelman F.D. 2007. Anaphylaxis: lessons from mouse models. J. Allergy Clin. Immunol. 120:506–515
    1. Fridlender Z.G., Albelda S.M. 2012. Tumor-associated neutrophils: friend or foe? Carcinogenesis. 33:949–955 10.1093/carcin/bgs123
    1. Fridlender Z.G., Sun J., Kim S., Kapoor V., Cheng G., Ling L., Worthen G.S., Albelda S.M. 2009. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell. 16:183–194 10.1016/j.ccr.2009.06.017
    1. Fuchs T.A., Abed U., Goosmann C., Hurwitz R., Schulze I., Wahn V., Weinrauch Y., Brinkmann V., Zychlinsky A. 2007. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176:231–241 10.1083/jcb.200606027
    1. Fuchs T.A., Brill A., Duerschmied D., Schatzberg D., Monestier M., Myers D.D., Jr, Wrobleski S.K., Wakefield T.W., Hartwig J.H., Wagner D.D. 2010. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA. 107:15880–15885 10.1073/pnas.1005743107
    1. Futosi K., Fodor S., Mócsai A. 2013. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int. Immunopharmacol. In press
    1. Gabrilovich D.I., Nagaraj S. 2009. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9:162–174 10.1038/nri2506
    1. Garcia-Romo G.S., Caielli S., Vega B., Connolly J., Allantaz F., Xu Z., Punaro M., Baisch J., Guiducci C., Coffman R.L., et al. 2011. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3:73ra20 10.1126/scitranslmed.3001201
    1. Geering B., Simon H.U. 2011. Peculiarities of cell death mechanisms in neutrophils. Cell Death Differ. 18:1457–1469 10.1038/cdd.2011.75
    1. Geiszt M., Kapus A., Német K., Farkas L., Ligeti E. 1997. Regulation of capacitative Ca2+ influx in human neutrophil granulocytes. Alterations in chronic granulomatous disease. J. Biol. Chem. 272:26471–26478 10.1074/jbc.272.42.26471
    1. Geiszt M., Kapus A., Ligeti E. 2001. Chronic granulomatous disease: more than the lack of superoxide? J. Leukoc. Biol. 69:191–196
    1. Granot Z., Henke E., Comen E.A., King T.A., Norton L., Benezra R. 2011. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 20:300–314 10.1016/j.ccr.2011.08.012
    1. Gregor M.F., Hotamisligil G.S. 2011. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29:415–445 10.1146/annurev-immunol-031210-101322
    1. Gregory A.D., Houghton A.M. 2011. Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res. 71:2411–2416 10.1158/0008-5472.CAN-10-2583
    1. Hakkim A., Fürnrohr B.G., Amann K., Laube B., Abed U.A., Brinkmann V., Herrmann M., Voll R.E., Zychlinsky A. 2010. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl. Acad. Sci. USA. 107:9813–9818 10.1073/pnas.0909927107
    1. Hansson G.K. 2005. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352:1685–1695 10.1056/NEJMra043430
    1. Hartl D., Krauss-Etschmann S., Koller B., Hordijk P.L., Kuijpers T.W., Hoffmann F., Hector A., Eber E., Marcos V., Bittmann I., et al. 2008. Infiltrated neutrophils acquire novel chemokine receptor expression and chemokine responsiveness in chronic inflammatory lung diseases. J. Immunol. 181:8053–8067
    1. Hock H., Hamblen M.J., Rooke H.M., Traver D., Bronson R.T., Cameron S., Orkin S.H. 2003. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity. 18:109–120 10.1016/S1074-7613(02)00501-0
    1. Houghton A.M., Rzymkiewicz D.M., Ji H., Gregory A.D., Egea E.E., Metz H.E., Stolz D.B., Land S.R., Marconcini L.A., Kliment C.R., et al. 2010. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat. Med. 16:219–223 10.1038/nm.2084
    1. Huard B., McKee T., Bosshard C., Durual S., Matthes T., Myit S., Donze O., Frossard C., Chizzolini C., Favre C., et al. 2008. APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa. J. Clin. Invest. 118:2887–2895
    1. Huo Y., Schober A., Forlow S.B., Smith D.F., Hyman M.C., Jung S., Littman D.R., Weber C., Ley K. 2003. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. 9:61–67 10.1038/nm810
    1. Inoue Y., Kaifu T., Sugahara-Tobinai A., Nakamura A., Miyazaki J., Takai T. 2007. Activating Fc γ receptors participate in the development of autoimmune diabetes in NOD mice. J. Immunol. 179:764–774
    1. Ionita M.G., van den Borne P., Catanzariti L.M., Moll F.L., de Vries J.P., Pasterkamp G., Vink A., de Kleijn D.P. 2010. High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arterioscler. Thromb. Vasc. Biol. 30:1842–1848 10.1161/ATVBAHA.110.209296
    1. Jablonska J., Leschner S., Westphal K., Lienenklaus S., Weiss S. 2010. Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model. J. Clin. Invest. 120:1151–1164 10.1172/JCI37223
    1. Jaeger B.N., Donadieu J., Cognet C., Bernat C., Ordoñez-Rueda D., Barlogis V., Mahlaoui N., Fenis A., Narni-Mancinelli E., Beaupain B., et al. 2012. Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis. J. Exp. Med. 209:565–580 10.1084/jem.20111908
    1. Jenne C.N., Wong C.H., Zemp F.J., McDonald B., Rahman M.M., Forsyth P.A., McFadden G., Kubes P. 2013. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe. 13:169–180 10.1016/j.chom.2013.01.005
    1. John B., Hunter C.A. 2008. Immunology. Neutrophil soldiers or Trojan Horses? Science. 321:917–918 10.1126/science.1162914
    1. Johnson R.C., Chapman S.M., Dong Z.M., Ordovas J.M., Mayadas T.N., Herz J., Hynes R.O., Schaefer E.J., Wagner D.D. 1997. Absence of P-selectin delays fatty streak formation in mice. J. Clin. Invest. 99:1037–1043 10.1172/JCI119231
    1. Jonsson H., Allen P., Peng S.L. 2005. Inflammatory arthritis requires Foxo3a to prevent Fas ligand-induced neutrophil apoptosis. Nat. Med. 11:666–671 10.1038/nm1248
    1. Jönsson F., Mancardi D.A., Kita Y., Karasuyama H., Iannascoli B., Van Rooijen N., Shimizu T., Daëron M., Bruhns P. 2011. Mouse and human neutrophils induce anaphylaxis. J. Clin. Invest. 121:1484–1496 10.1172/JCI45232
    1. Jönsson F., Mancardi D.A., Zhao W., Kita Y., Iannascoli B., Khun H., van Rooijen N., Shimizu T., Schwartz L.B., Daëron M., Bruhns P. 2012. Human FcγRIIA induces anaphylactic and allergic reactions. Blood. 119:2533–2544 10.1182/blood-2011-07-367334
    1. Kaplan M.J. 2011. Neutrophils in the pathogenesis and manifestations of SLE. Nat. Rev. Rheumatol. 7:691–699 10.1038/nrrheum.2011.132
    1. Kaplan D.H., Igyártó B.Z., Gaspari A.A. 2012. Early immune events in the induction of allergic contact dermatitis. Nat. Rev. Immunol. 12:114–124
    1. Karsunky H., Zeng H., Schmidt T., Zevnik B., Kluge R., Schmid K.W., Dührsen U., Möröy T. 2002. Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nat. Genet. 30:295–300 10.1038/ng831
    1. Kessenbrock K., Krumbholz M., Schönermarck U., Back W., Gross W.L., Werb Z., Gröne H.J., Brinkmann V., Jenne D.E. 2009. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15:623–625 10.1038/nm.1959
    1. Khan B.Q., Kemp S.F. 2011. Pathophysiology of anaphylaxis. Curr. Opin. Allergy Clin. Immunol. 11:319–325 10.1097/ACI.0b013e3283481ab6
    1. Khandpur R., Carmona-Rivera C., Vivekanandan-Giri A., Gizinski A., Yalavarthi S., Knight J.S., Friday S., Li S., Patel R.M., Subramanian V., et al. 2013. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5:178ra40 10.1126/scitranslmed.3005580
    1. Lande R., Gregorio J., Facchinetti V., Chatterjee B., Wang Y.H., Homey B., Cao W., Wang Y.H., Su B., Nestle F.O., et al. 2007. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 449:564–569 10.1038/nature06116
    1. Lande R., Ganguly D., Facchinetti V., Frasca L., Conrad C., Gregorio J., Meller S., Chamilos G., Sebasigari R., Riccieri V., et al. 2011. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3:73ra19 10.1126/scitranslmed.3001180
    1. Leto T.L., Geiszt M. 2006. Role of Nox family NADPH oxidases in host defense. Antioxid. Redox Signal. 8:1549–1561 10.1089/ars.2006.8.1549
    1. Ley K., Laudanna C., Cybulsky M.I., Nourshargh S. 2007. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7:678–689 10.1038/nri2156
    1. Liu F., Wu H.Y., Wesselschmidt R., Kornaga T., Link D.C. 1996. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity. 5:491–501 10.1016/S1074-7613(00)80504-X
    1. Lowe D.M., Redford P.S., Wilkinson R.J., O’Garra A., Martineau A.R. 2012. Neutrophils in tuberculosis: friend or foe? Trends Immunol. 33:14–25 10.1016/j.it.2011.10.003
    1. Maletto B.A., Ropolo A.S., Alignani D.O., Liscovsky M.V., Ranocchia R.P., Moron V.G., Pistoresi-Palencia M.C. 2006. Presence of neutrophil-bearing antigen in lymphoid organs of immune mice. Blood. 108:3094–3102 10.1182/blood-2006-04-016659
    1. Mantovani A., Cassatella M.A., Costantini C., Jaillon S. 2011. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11:519–531 10.1038/nri3024
    1. Martineau A.R., Newton S.M., Wilkinson K.A., Kampmann B., Hall B.M., Nawroly N., Packe G.E., Davidson R.N., Griffiths C.J., Wilkinson R.J. 2007. Neutrophil-mediated innate immune resistance to mycobacteria. J. Clin. Invest. 117:1988–1994 10.1172/JCI31097
    1. Massberg S., Brand K., Grüner S., Page S., Müller E., Müller I., Bergmeier W., Richter T., Lorenz M., Konrad I., et al. 2002. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J. Exp. Med. 196:887–896 10.1084/jem.20012044
    1. Massberg S., Grahl L., von Bruehl M.L., Manukyan D., Pfeiler S., Goosmann C., Brinkmann V., Lorenz M., Bidzhekov K., Khandagale A.B., et al. 2010. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 16:887–896 10.1038/nm.2184
    1. Maugeri N., de Gaetano G., Carbone A., Donati M.B., Cerletti C. 2005. More on: tissue factor in neutrophils. J. Thromb. Haemost. 3:1114 10.1111/j.1538-7836.2005.01320.x
    1. Maugeri N., Brambilla M., Camera M., Carbone A., Tremoli E., Donati M.B., de Gaetano G., Cerletti C. 2006. Human polymorphonuclear leukocytes produce and express functional tissue factor upon stimulation. J. Thromb. Haemost. 4:1323–1330 10.1111/j.1538-7836.2006.01968.x
    1. McDonald B., Pittman K., Menezes G.B., Hirota S.A., Slaba I., Waterhouse C.C., Beck P.L., Muruve D.A., Kubes P. 2010. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science. 330:362–366 10.1126/science.1195491
    1. McDonald B., Urrutia R., Yipp B.G., Jenne C.N., Kubes P. 2012. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 12:324–333 10.1016/j.chom.2012.06.011
    1. Megiovanni A.M., Sanchez F., Robledo-Sarmiento M., Morel C., Gluckman J.C., Boudaly S. 2006. Polymorphonuclear neutrophils deliver activation signals and antigenic molecules to dendritic cells: a new link between leukocytes upstream of T lymphocytes. J. Leukoc. Biol. 79:977–988 10.1189/jlb.0905526
    1. Menegazzi R., Decleva E., Dri P. 2012. Killing by neutrophil extracellular traps: fact or folklore? Blood. 119:1214–1216 10.1182/blood-2011-07-364604
    1. Mestas J., Hughes C.C. 2004. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172:2731–2738
    1. Nageh M.F., Sandberg E.T., Marotti K.R., Lin A.H., Melchior E.P., Bullard D.C., Beaudet A.L. 1997. Deficiency of inflammatory cell adhesion molecules protects against atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 17:1517–1520 10.1161/01.ATV.17.8.1517
    1. Nandi B., Behar S.M. 2011. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J. Exp. Med. 208:2251–2262 10.1084/jem.20110919
    1. Naruko T., Ueda M., Haze K., van der Wal A.C., van der Loos C.M., Itoh A., Komatsu R., Ikura Y., Ogami M., Shimada Y., et al. 2002. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation. 106:2894–2900 10.1161/01.CIR.0000042674.89762.20
    1. Nathan C. 2006. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6:173–182 10.1038/nri1785
    1. Nauseef W.M. 2012. Editorial: Nyet to NETs? A pause for healthy skepticism. J. Leukoc. Biol. 91:353–355 10.1189/jlb.1011495
    1. Németh T., Mócsai A. 2012. The role of neutrophils in autoimmune diseases. Immunol. Lett. 143:9–19 10.1016/j.imlet.2012.01.013
    1. Nordenfelt P., Tapper H. 2011. Phagosome dynamics during phagocytosis by neutrophils. J. Leukoc. Biol. 90:271–284 10.1189/jlb.0810457
    1. Nourshargh S., Hordijk P.L., Sixt M. 2010. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat. Rev. Mol. Cell Biol. 11:366–378 10.1038/nrm2889
    1. Obermoser G., Pascual V. 2010. The interferon-α signature of systemic lupus erythematosus. Lupus. 19:1012–1019 10.1177/0961203310371161
    1. Oehler L., Majdic O., Pickl W.F., Stöckl J., Riedl E., Drach J., Rappersberger K., Geissler K., Knapp W. 1998. Neutrophil granulocyte-committed cells can be driven to acquire dendritic cell characteristics. J. Exp. Med. 187:1019–1028 10.1084/jem.187.7.1019
    1. Ohnmacht C., Schwartz C., Panzer M., Schiedewitz I., Naumann R., Voehringer D. 2010. Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity. 33:364–374 10.1016/j.immuni.2010.08.011
    1. Olefsky J.M., Glass C.K. 2010. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72:219–246 10.1146/annurev-physiol-021909-135846
    1. Ordoñez-Rueda D., Jönsson F., Mancardi D.A., Zhao W., Malzac A., Liang Y., Bertosio E., Grenot P., Blanquet V., Sabrautzki S., et al. 2012. A hypomorphic mutation in the Gfi1 transcriptional repressor results in a novel form of neutropenia. Eur. J. Immunol. 42:2395–2408 10.1002/eji.201242589
    1. Oyoshi M.K., He R., Li Y., Mondal S., Yoon J., Afshar R., Chen M., Lee D.M., Luo H.R., Luster A.D., et al. 2012. Leukotriene B4-driven neutrophil recruitment to the skin is essential for allergic skin inflammation. Immunity. 37:747–758 10.1016/j.immuni.2012.06.018
    1. Parker H., Albrett A.M., Kettle A.J., Winterbourn C.C. 2012a. Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence of hydrogen peroxide. J. Leukoc. Biol. 91:369–376 10.1189/jlb.0711387
    1. Parker H., Dragunow M., Hampton M.B., Kettle A.J., Winterbourn C.C. 2012b. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J. Leukoc. Biol. 92:841–849 10.1189/jlb.1211601
    1. Pekarek L.A., Starr B.A., Toledano A.Y., Schreiber H. 1995. Inhibition of tumor growth by elimination of granulocytes. J. Exp. Med. 181:435–440 10.1084/jem.181.1.435
    1. Person R.E., Li F.Q., Duan Z., Benson K.F., Wechsler J., Papadaki H.A., Eliopoulos G., Kaufman C., Bertolone S.J., Nakamoto B., et al. 2003. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat. Genet. 34:308–312 10.1038/ng1170
    1. Peters N.C., Egen J.G., Secundino N., Debrabant A., Kimblin N., Kamhawi S., Lawyer P., Fay M.P., Germain R.N., Sacks D. 2008. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 321:970–974 10.1126/science.1159194
    1. Pillay J., den Braber I., Vrisekoop N., Kwast L.M., de Boer R.J., Borghans J.A., Tesselaar K., Koenderman L. 2010. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood. 116:625–627 10.1182/blood-2010-01-259028
    1. Pillay J., Kamp V.M., van Hoffen E., Visser T., Tak T., Lammers J.W., Ulfman L.H., Leenen L.P., Pickkers P., Koenderman L. 2012. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J. Clin. Invest. 122:327–336 10.1172/JCI57990
    1. Porcherie A., Mathieu C., Peronet R., Schneider E., Claver J., Commere P.H., Kiefer-Biasizzo H., Karasuyama H., Milon G., Dy M., et al. 2011. Critical role of the neutrophil-associated high-affinity receptor for IgE in the pathogenesis of experimental cerebral malaria. J. Exp. Med. 208:2225–2236 10.1084/jem.20110845
    1. Proebstl D., Voisin M.B., Woodfin A., Whiteford J., D’Acquisto F., Jones G.E., Rowe D., Nourshargh S. 2012. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J. Exp. Med. 209:1219–1234 10.1084/jem.20111622
    1. Puga I., Cols M., Barra C.M., He B., Cassis L., Gentile M., Comerma L., Chorny A., Shan M., Xu W., et al. 2011. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat. Immunol. 13:170–180 10.1038/ni.2194
    1. Rada B.K., Geiszt M., Káldi K., Timár C., Ligeti E. 2004. Dual role of phagocytic NADPH oxidase in bacterial killing. Blood. 104:2947–2953 10.1182/blood-2004-03-1005
    1. Rada B.K., Geiszt M., Hably C., Ligeti E. 2005. Consequences of the electrogenic function of the phagocytic NADPH oxidase. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360:2293–2300 10.1098/rstb.2005.1768
    1. Reeves E.P., Lu H., Jacobs H.L., Messina C.G., Bolsover S., Gabella G., Potma E.O., Warley A., Roes J., Segal A.W. 2002. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature. 416:291–297 10.1038/416291a
    1. Rensen S.S., Slaats Y., Nijhuis J., Jans A., Bieghs V., Driessen A., Malle E., Greve J.W., Buurman W.A. 2009. Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis. Am. J. Pathol. 175:1473–1482 10.2353/ajpath.2009.080999
    1. Rotzius P., Thams S., Soehnlein O., Kenne E., Tseng C.N., Björkström N.K., Malmberg K.J., Lindbom L., Eriksson E.E. 2010. Distinct infiltration of neutrophils in lesion shoulders in ApoE−/− mice. Am. J. Pathol. 177:493–500 10.2353/ajpath.2010.090480
    1. Saitoh T., Komano J., Saitoh Y., Misawa T., Takahama M., Kozaki T., Uehata T., Iwasaki H., Omori H., Yamaoka S., et al. 2012. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 12:109–116 10.1016/j.chom.2012.05.015
    1. Scapini P., Nardelli B., Nadali G., Calzetti F., Pizzolo G., Montecucco C., Cassatella M.A. 2003. G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J. Exp. Med. 197:297–302 10.1084/jem.20021343
    1. Scapini P., Bazzoni F., Cassatella M.A. 2008. Regulation of B-cell-activating factor (BAFF)/B lymphocyte stimulator (BLyS) expression in human neutrophils. Immunol. Lett. 116:1–6 10.1016/j.imlet.2007.11.009
    1. Schrenzel J., Serrander L., Bánfi B., Nüsse O., Fouyouzi R., Lew D.P., Demaurex N., Krause K.H. 1998. Electron currents generated by the human phagocyte NADPH oxidase. Nature. 392:734–737 10.1038/33725
    1. Schwaller J., Schneider P., Mhawech-Fauceglia P., McKee T., Myit S., Matthes T., Tschopp J., Donze O., Le Gal F.A., Huard B. 2007. Neutrophil-derived APRIL concentrated in tumor lesions by proteoglycans correlates with human B-cell lymphoma aggressiveness. Blood. 109:331–338 10.1182/blood-2006-02-001800
    1. Seok J., Warren H.S., Cuenca A.G., Mindrinos M.N., Baker H.V., Xu W., Richards D.R., McDonald-Smith G.P., Gao H., Hennessy L., et al. ; Inflammation and Host Response to Injury, Large Scale Collaborative Research Program 2013. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA. 110:3507–3512 10.1073/pnas.1222878110
    1. Serhan C.N. 2007. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu. Rev. Immunol. 25:101–137 10.1146/annurev.immunol.25.022106.141647
    1. Serhan C.N., Chiang N., Van Dyke T.E. 2008. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 8:349–361 10.1038/nri2294
    1. Soehnlein O. 2009. Direct and alternative antimicrobial mechanisms of neutrophil-derived granule proteins. J. Mol. Med. 87:1157–1164 10.1007/s00109-009-0508-6
    1. Soehnlein O., Lindbom L. 2010. Phagocyte partnership during the onset and resolution of inflammation. Nat. Rev. Immunol. 10:427–439 10.1038/nri2779
    1. Soehnlein O., Wantha S., Simsekyilmaz S., Döring Y., Megens R.T., Mause S.F., Drechsler M., Smeets R., Weinandy S., Schreiber F., et al. 2011. Neutrophil-derived cathelicidin protects from neointimal hyperplasia. Sci. Transl. Med. 3:103ra98 10.1126/scitranslmed.3002531
    1. Spörri R., Joller N., Hilbi H., Oxenius A. 2008. A novel role for neutrophils as critical activators of NK cells. J. Immunol. 181:7121–7130
    1. Stark K., Eckart A., Haidari S., Tirniceriu A., Lorenz M., von Brühl M.L., Gärtner F., Khandoga A.G., Legate K.R., Pless R., et al. 2013. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat. Immunol. 14:41–51 10.1038/ni.2477
    1. Takai T. 2005. Fc receptors and their role in immune regulation and autoimmunity. J. Clin. Immunol. 25:1–18 10.1007/s10875-005-0353-8
    1. Talukdar S., Oh Y., Bandyopadhyay G., Li D., Xu J., McNelis J., Lu M., Li P., Yan Q., Zhu Y., et al. 2012. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18:1407–1412 10.1038/nm.2885
    1. Timár C.I., Lőrincz A.M., Csépányi-Kömi R., Vályi-Nagy A., Nagy G., Buzás E.I., Iványi Z., Kittel A., Powell D.W., McLeish K.R., Ligeti E. 2013. Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood. 121:510–518 10.1182/blood-2012-05-431114
    1. Tsujimura Y., Obata K., Mukai K., Shindou H., Yoshida M., Nishikado H., Kawano Y., Minegishi Y., Shimizu T., Karasuyama H. 2008. Basophils play a pivotal role in immunoglobulin-G-mediated but not immunoglobulin-E-mediated systemic anaphylaxis. Immunity. 28:581–589 10.1016/j.immuni.2008.02.008
    1. van Gisbergen K.P., Geijtenbeek T.B., van Kooyk Y. 2005a. Close encounters of neutrophils and DCs. Trends Immunol. 26:626–631 10.1016/j.it.2005.09.007
    1. van Gisbergen K.P., Sanchez-Hernandez M., Geijtenbeek T.B., van Kooyk Y. 2005b. Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J. Exp. Med. 201:1281–1292 10.1084/jem.20041276
    1. van Zandbergen G., Klinger M., Mueller A., Dannenberg S., Gebert A., Solbach W., Laskay T. 2004. Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J. Immunol. 173:6521–6525
    1. von Brühl M.L., Stark K., Steinhart A., Chandraratne S., Konrad I., Lorenz M., Khandoga A., Tirniceriu A., Coletti R., Köllnberger M., et al. 2012. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 209:819–835 10.1084/jem.20112322
    1. von Hundelshausen P., Weber K.S., Huo Y., Proudfoot A.E., Nelson P.J., Ley K., Weber C. 2001. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation. 103:1772–1777 10.1161/01.CIR.103.13.1772
    1. Weber F.C., Nemeth T., Ozsvari B., Oswald E., Futosi K., Puskas L., Jakob T., Martin S.F., Mocsai A. 2012. Neutrophils are crucial innate effector cells in contact hypersensitivity. Eur. J. Clin. Invest. 42:17 10.1111/j.1365-2362.2011.02549.x
    1. Witko-Sarsat V., Rieu P., Descamps-Latscha B., Lesavre P., Halbwachs-Mecarelli L. 2000. Neutrophils: molecules, functions and pathophysiological aspects. Lab. Invest. 80:617–653 10.1038/labinvest.3780067
    1. Witko-Sarsat V., Pederzoli-Ribeil M., Hirsch E., Sozzani S., Cassatella M.A. 2011. Regulating neutrophil apoptosis: new players enter the game. Trends Immunol. 32:117–124 10.1016/j.it.2011.01.001
    1. Woodfin A., Voisin M.B., Beyrau M., Colom B., Caille D., Diapouli F.M., Nash G.B., Chavakis T., Albelda S.M., Rainger G.E., et al. 2011. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat. Immunol. 12:761–769 10.1038/ni.2062
    1. Yang C.W., Unanue E.R. 2013. Neutrophils control the magnitude and spread of the immune response in a thromboxane A2-mediated process. J. Exp. Med. 210:375–387 10.1084/jem.20122183
    1. Yang D., de la Rosa G., Tewary P., Oppenheim J.J. 2009. Alarmins link neutrophils and dendritic cells. Trends Immunol. 30:531–537 10.1016/j.it.2009.07.004
    1. Yang X.D., Ai W., Asfaha S., Bhagat G., Friedman R.A., Jin G., Park H., Shykind B., Diacovo T.G., Falus A., Wang T.C. 2011. Histamine deficiency promotes inflammation-associated carcinogenesis through reduced myeloid maturation and accumulation of CD11b+Ly6G+ immature myeloid cells. Nat. Med. 17:87–95 10.1038/nm.2278
    1. Yang C.T., Cambier C.J., Davis J.M., Hall C.J., Crosier P.S., Ramakrishnan L. 2012. Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages. Cell Host Microbe. 12:301–312 10.1016/j.chom.2012.07.009
    1. Yasutomo K., Horiuchi T., Kagami S., Tsukamoto H., Hashimura C., Urushihara M., Kuroda Y. 2001. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat. Genet. 28:313–314 10.1038/91070
    1. Yipp B.G., Petri B., Salina D., Jenne C.N., Scott B.N., Zbytnuik L.D., Pittman K., Asaduzzaman M., Wu K., Meijndert H.C., et al. 2012. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med. 18:1386–1393 10.1038/nm.2847
    1. Zhang X., Majlessi L., Deriaud E., Leclerc C., Lo-Man R. 2009. Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity. 31:761–771 10.1016/j.immuni.2009.09.016

Source: PubMed

3
Iratkozz fel