Metabolic Imaging and Biological Assessment: Platforms to Evaluate Acute Lung Injury and Inflammation

Mehrdad Pourfathi, Stephen J Kadlecek, Shampa Chatterjee, Rahim R Rizi, Mehrdad Pourfathi, Stephen J Kadlecek, Shampa Chatterjee, Rahim R Rizi

Abstract

Pulmonary inflammation is a hallmark of several pulmonary disorders including acute lung injury and acute respiratory distress syndrome. Moreover, it has been shown that patients with hyperinflammatory phenotype have a significantly higher mortality rate. Despite this, current therapeutic approaches focus on managing the injury rather than subsiding the inflammatory burden of the lung. This is because of the lack of appropriate non-invasive biomarkers that can be used clinically to assess pulmonary inflammation. In this review, we discuss two metabolic imaging tools that can be used to non-invasively assess lung inflammation. The first method, Positron Emission Tomography (PET), is widely used in clinical oncology and quantifies flux in metabolic pathways by measuring uptake of a radiolabeled molecule into the cells. The second method, hyperpolarized 13C MRI, is an emerging tool that interrogates the branching points of the metabolic pathways to quantify the fate of metabolites. We discuss the differences and similarities between these techniques and discuss their clinical applications.

Keywords: ARDS; FDG-PET; HP-MRI; lung inflammation; lung injury.

Copyright © 2020 Pourfathi, Kadlecek, Chatterjee and Rizi.

Figures

FIGURE 1
FIGURE 1
Radiographic and Computed Tomographic (CT) Findings in the Acute, or Exudative, Phase (Panels A,C) and the Fibrosing-Alveolitis Phase (Panels B,D) of Acute Lung Injury and the Acute Respiratory Distress Syndrome (ARDS). Panel (A) shows a chest radiograph from a patient with the ARDS associated with gram-negative sepsis who was receiving mechanical ventilation. There are diffuse bilateral alveolar opacities consistent with the presence of pulmonary edema. Panel (B) shows an anteroposterior chest radiograph from another patient with ARDS who had been receiving mechanical ventilation for seven days. Reticular opacities are present throughout both lung fields, a finding suggestive of the development of fibrosing alveolitis. Panel (C) shows a CT scan of the chest obtained during the acute phase. The bilateral alveolar opacities are denser in the dependent, posterior lung zones, with sparing of the anterior lung fields. The arrows indicate thickened interlobular septa, consistent with the presence of pulmonary edema. Panel (D) shows a CT scan of the chest obtained during the fibrosing-alveolitis phase. There are reticular opacities and diffuse ground-glass opacities throughout both lung fields, and a large bulla is present in the left anterior hemithorax. Reproduced with permission from Ware and Matthay (2000).
FIGURE 2
FIGURE 2
Etiologies, manifestations and sequelae of ARDS/ALI. Upon diagnosis, patients undergo supportive therapy using protective ventilation. The patient’s overall condition is assessed by chest radiography, computed tomography, ventilatory parameters and ABG. Treatment either results in resolution of ARDS/ALI or in the syndrome’s progression into severe respiratory failure, pulmonary fibrosis and eventual multi-organ failure. Reproduced with permission from Pourfathi (2019).
FIGURE 3
FIGURE 3
The healthy lung (left), and the acute phase of ARDS/ALI (right). In ARDS/ALI, injury is initiated by either direct or indirect insults to the delicate alveolar structure of the distal lung and associated micro-vasculature. In the acute phase of the injury, resident alveolar macrophages are activated, leading to the release of potent pro-inflammatory mediators and chemokines that promote the accumulation of neutrophils and monocytes. Reproduced with permission from Ware and Matthay (2000).
FIGURE 4
FIGURE 4
(A) Lung lactate production measured by the difference in the lactate concentration across the lungs (arteriovenous difference in lactate) in various groups of patients shows that lungs of ALI patients produce significant amounts of lactate. (B) Lung lactate production measured in 43 patients with acute injury showed that it is proportional to injury severity as determined by Murray’s lung injury score (Murray et al., 1988). (ALI, acute lung injury; CPE, acute pulmonary edema; BPN, bronchopneumonia; LTx, lung transplantation; Other, other types of respiratory failure, mEq/min.M2: mmoles per minute per square meter). Reprinted with permission of the American Thoracic Society. Copyright © 2019 American Thoracic Society from De Backer et al. (1997). The American Journal of Respiratory and Critical Care Medicine is an official journal of the American Thoracic Society. *p < 0.05 versus ALI, +p < 0.01 versus ALI.
FIGURE 5
FIGURE 5
Representative axial computed tomography (CT) in the middle panel, and coronal (left) and axial (right) [18F] fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) at the obtained from 4 patients, 72 hours after diagnosis with acute lung injury. Moderate uptake of FDG was observed in non/poorly aerated regions (black arrows). In contrast, uptake of FDG was low in normally aerated lung (white arrow). Reproduced with permission from Rodrigues et al. (2008).
FIGURE 6
FIGURE 6
(Top) Metabolites and their biochemical pathways that can be interrogated using [1-13C] pyruvate. MRI. The red circle indicates atoms with 13C labeled nuclei. The fate of the pyruvate beyond Acetyl-CoA into the Tricarboxylic Acid (TCA) cycle cannot be probed using [1-13C] pyruvate as the 13C labeled nucleolus remains on the 13CO2 molecule. Cofactors are not shown in this diagram for simplicity (LDH, lactate dehydrogenase; ALT, alanine transaminase; PDH, pyruvate dehydrogenase; CA, carbonic anhydrase). (Bottom) (A) NMR spectrum obtained from a mouse after administration of hyperpolarized [1-13C] pyruvate via the tail-vein. (B) Spectra obtained every second shows how different peaks vary over time. (C) Area under each peak depicted as a function of time to represent the relative concentration of each peak. Reproduced with permission from Pourfathi (2019).
FIGURE 7
FIGURE 7
(A) Pyruvate, lactate and lactate -to-pyruvate segmented maps overlaid on their corresponding proton image of a ZEEP rat 4 h after the acid instillation shows injury to the posterior right lung marked by increased intensity in the proton image (white arrow). The metabolite maps show increased lactate signal intensity and lactate-to-pyruvate ratio colocalized with the injured area. (B) Hematoxylin and Eosin (H&E) axial slide of the whole lung clearly shows damaged lung tissue in the same area (black arrow). Magnified images taken from the injured area (black box) with (C) 10× and (D) 40× magnifications show severe damage and inflammatory infiltrates in the tissue. The bar in (C) is 100 μm. Reproduced with permission from Pourfathi (2019).

References

    1. Ardenkjaer-Larsen J. H., Fridlund B., Gram A., Hansson G., Hansson L., Lerche M. H., et al. (2003). Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. U.S.A. 100 10158–10163. 10.1073/pnas.1733835100
    1. Ards Definition Task Force, Ranieri V. M., Rubenfeld G. D., Thompson B. T., Ferguson N. D., Caldwell E., et al. (2012). Acute respiratory distress syndrome: the berlin definition. JAMA 307 2526–2533. 10.1001/jama.2012.5669
    1. Ashbaugh D. G., Bigelow D. B., Petty T. L., Levine B. E. (2005). Acute respiratory distress in adults. the lancet, saturday 12 august 1967. Crit. Care Resusc 7 60–61.
    1. Bellani G., Guerra L., Musch G., Zanella A., Patroniti N., Mauri T., et al. (2011). Lung regional metabolic activity and gas volume changes induced by tidal ventilation in patients with acute lung injury. Am. J. Respir. Crit. Care Med. 183 1193–1199. 10.1164/rccm.201008-1318OC
    1. Bellani G., Mauri T., Pesenti A. (2012). Imaging in acute lung injury and acute respiratory distress syndrome. Curr. Opin. Crit. Care 18 29–34. 10.1097/MCC.0b013e32834eb47d
    1. Bellani G., Messa C., Guerra L., Spagnolli E., Foti G., Patroniti N., et al. (2009). Lungs of patients with acute respiratory distress syndrome show diffuse inflammation in normally aerated regions: a [18F]-fluoro-2-deoxy-D-glucose PET/CT study. Crit. Care Med. 37 2216–2222. 10.1097/CCM.0b013e3181aab31f
    1. Bermuda (2004). “Arginine metabolism: enzymology, nutrition, and clinical significance,” in Proceedings of a Symposium Dedicated to the Memory of Vernon R. Young. April 5-6, 2004, Bermuda.
    1. Cereda M., Xin Y., Goffi A., Herrmann J., Kaczka D. W., Kavanagh B. P., et al. (2019). Imaging the injured lung: mechanisms of action and clinical use. Anesthesiology 131 716–749. 10.1097/ALN.0000000000002583
    1. Cereda M., Xin Y., Meeder N., Zeng J., Jiang Y., Hamedani H., et al. (2016). Visualizing the propagation of acute lung injury. Anesthesiology 124 121–131. 10.1097/ALN.0000000000000916
    1. Chen D. L., Cheriyan J., Chilvers E., Choudoury G., Coello C., Connell M., et al. (2017). Quantification of lung PET images: challenges and opportunities. J. Nucl. Med. 58 201–207. 10.2967/jnumed.116.184796
    1. Chen D. L., Ferkol T. W., Mintun M. A., Pittman J. E., Rosenbluth D. B., Schuster D. P. (2006a). Quantifying pulmonary inflammation in cystic fibrosis with positron emission tomography. Am. J. Respir. Crit. Care Med. 173 1363–1369. 10.1164/rccm.200506-934OC
    1. Chen D. L., Rosenbluth D. B., Mintun M. A., Schuster D. P. (2006b). FDG-PET imaging of pulmonary inflammation in healthy volunteers after airway instillation of endotoxin. J. Appl. Physiol. 100 1602–1609. 10.1152/japplphysiol.01429.2005
    1. Cunningham C. H., Lau J. Y. C., Chen A. P., Geraghty B. J., Perks W. J., Roifman I., et al. (2016). Hyperpolarized 13C metabolic MRI of the human heart: initial experience. Circ. Res. 119 1177–1182. 10.1161/CIRCRESAHA.116.309769
    1. Day S. E., Kettunen M. I., Gallagher F. A., Hu D.-E., Lerche M., Wolber J., et al. (2007). Erratum: detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat. Med. 13 1521–1521. 10.1038/nm1207-1521
    1. De Backer D., Creteur J., Zhang H., Norrenberg M., Vincent J. L. (1997). Lactate production by the lungs in acute lung injury. Am. J. Respir. Crit. Care Med. 156 1099–1104. 10.1164/ajrccm.156.4.9701048
    1. de Prost N., Costa E. L., Wellman T., Musch G., Tucci M. R., Winkler T., et al. (2013). Effects of ventilation strategy on distribution of lung inflammatory cell activity. - PubMed - NCBI. Crit. Care 17:R175. 10.1186/cc12854
    1. de Prost N., Feng Y., Wellman T., Tucci M. R., Costa E. L., Musch G., et al. (2014). 18F-FDG kinetics parameters depend on the mechanism of injury in early experimental acute respiratory distress syndrome. J. Nucl. Med. 55 1871–1877. 10.2967/jnumed.114.140962
    1. Fanelli V., Ranieri V. M. (2015). Mechanisms and clinical consequences of acute lung injury. Ann. ATS 12 S3–S8. 10.1513/AnnalsATS.201407-340MG
    1. Fisher A. B. (1984). Intermediary metabolism of the lung. Environ. Health Perspect. 55 149–158. 10.1289/ehp.8455149
    1. Fisher A. B., Dodia C. (1984). Lactate and regulation of lung glycolytic rate. Am. J. Physiol. 246 E426–E429. 10.1152/ajpendo.1984.246.5.E426
    1. Fisher A. B., Steinberg H., Bassett M. D. D. (1974). Energy utilization by the lung. Symp. Lung Pulmon. Circ. 57 437–446.
    1. Gambhir S. S., Czernin J., Schwimmer J., Silverman D. H., Coleman R. E., Phelps M. E. (2001). A tabulated summary of the FDG PET literature. J. Nucl. Med. 42 1S–93S.
    1. Gattinoni L., Chiumello D., Rossi S. (2020). COVID-19 pneumonia: ARDS or not? Crit. Care 24 1–3. 10.1186/s13054-020-02880-z
    1. Herridge M. S. (2017). 50 years of research in ARDS. Long-term follow-up after ARDS: insights for managing medical complexity after critical illness. Am. J. Respir. Crit. Care Med. 196 1380–1384. 10.1164/rccm.201704-0815ED
    1. Heusch P., Buchbender C., Kohler J., Nensa F., Gauler T., Gomez B., et al. (2014). Thoracic staging in lung cancer: prospective comparison of 18F-FDG PET/MR imaging and 18F-FDG PET/CT. J. Nucl. Med. 55 373–378. 10.2967/jnumed.113.129825
    1. Huang H. J., Isakow W., Byers D. E., Engle J. T., Griffin E. A., Kemp D., et al. (2015). Imaging pulmonary inducible nitric oxide synthase expression with PET. J. Nucl. Med. 56 76–81. 10.2967/jnumed.114.146381
    1. Iscra F., Gullo A., Biolo G. (2002). Bench-to-bedside review: lactate and the lung. Crit. Care 6 327–329. 10.1186/cc1519
    1. Jochen Grommes O. S. (2011). Contribution of neutrophils to acute lung injury. Mol. Med. 17 293–307. 10.2119/molmed.2010.00138
    1. Johnson E. R., Matthay M. A. (2010). Acute lung injury: epidemiology, pathogenesis, and treatment. J. Aerosol. Med. Pulmon. Drug Deliv. 23 243–252. 10.1089/jamp.2009.0775
    1. Johnson M. L. (2011). Transpulmonary lactate and pyruvate kinetics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301 R769–R774.
    1. Jones H. A., Clark R. J., Rhodes C. G., Schofield J. B., Krausz T., Haslett C. (1994). In vivo measurement of neutrophil activity in experimental lung inflammation. Am. J. Respir. Crit. Care Med. 149 1635–1639. 10.1164/ajrccm.149.6.7516252
    1. Kellum J. A., Kramer D. J., Lee K., Mankad S., Bellomo R., Pinsky M. R. (1997). Release of lactate by the lung in acute lung injury. Chest 111 1301–1305. 10.1378/chest.111.5.1301
    1. Kim J., Moon B. S., Lee B. C., Lee H.-Y., Kim H.-J., Choo H., et al. (2017). A potential PET radiotracer for the 5-HT2C receptor: synthesis and in vivo evaluation of 4-(3-[18F]fluorophenethoxy)pyrimidine. ACS Chem. Neurosci. 8 996–1003. 10.1021/acschemneuro.6b00445
    1. Kottmann R. M., Kulkarni A. A., Smolnycki K. A., Lyda E., Dahanayake T., Salibi R., et al. (2012). Lactic Acid Is Elevated in Idiopathic Pulmonary Fibrosis and Induces Myofibroblast Differentiation via pH-Dependent Activation of Transforming Growth Factor-β. Am. J. Respir. Crit. Care Med. 186 740–751. 10.1164/rccm.201201-0084OC
    1. Kurhanewicz J., Vigneron D. B., Ardenkjaer-Larsen J. H., Bankson J. A., Brindle K., Cunningham C. H., et al. (2019). Hyperpolarized 13C MRI: path to clinical translation in oncology. Neoplasia 21 1–16. 10.1016/j.neo.2018.09.006
    1. Kurhanewicz J., Vigneron D. B., Brindle K., Chekmenev E. Y., Comment A., Cunningham C. H., et al. (2011). Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13 81–97. 10.1593/neo.101102
    1. Lau A. Z., Chen A. P., Ghugre N. R., Ramanan V., Lam W. W., Connelly K. A., et al. (2010). Rapid multislice imaging of hyperpolarized 13C pyruvate and bicarbonate in the heart. Magn. Reson. Med. 64 1323–1331. 10.1002/mrm.22525
    1. Laustsen C., Stokholm Nørlinger T., Christoffer Hansen D., Qi H., Mose Nielsen P., Bonde Bertelsen L., et al. (2015). Hyperpolarized 13C urea relaxation mechanism reveals renal changes in diabetic nephropathy. Magn. Reson. Med. 75 515–518. 10.1002/mrm.26036
    1. Lee P., Leong W., Tan T., Lim M., Han W., Radda G. K. (2013). In Vivo hyperpolarized carbon-13 magnetic resonance spectroscopy reveals increased pyruvate carboxylase flux in an insulin-resistant mouse model. Hepatology 57 515–524. 10.1002/hep.26028
    1. Merkow J., Lufkin R., Nguyen K., Soatto S., Tu Z., Vedaldi A. (2017). DeepRadiologyNet: radiologist level pathology detection in CT head images. arXiv [Preprint]. Available online at: (accessed January 5, 2020).
    1. Miles K. A., Voo S. A., Groves A. M. (2018). Additional clinical value for PET/MRI in oncology: moving beyond simple diagnosis. J. Nucl. Med. 59 1028–1032. 10.2967/jnumed.117.203612
    1. Miller E. J., Cohen A. B., Matthay M. A. (1996). Increased interleukin-8 concentrations in the pulmonary edema fluid of patients with acute respiratory distress syndrome from sepsis. Crit. Care Med 24 1448–1454. 10.1097/00003246-199609000-00004
    1. Mills G. H. (2003). Functional magnetic resonance imaging of the lung. Br. J. Anaesth. 91 16–30. 10.1093/bja/aeg149
    1. Mistry N. N., Pollaro J., Song J., De Lin M., Johnson G. A. (2008). Pulmonary perfusion imaging in the rodent lung using dynamic contrast-enhanced MRI. Magn. Reson. Med. 59 289–297. 10.1002/mrm.21353
    1. Murray J. F., Matthay M. A., Luce J. M., Flick M. R. (1988). An expanded definition of the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 138 720–723. 10.1164/ajrccm/138.3.720
    1. Musch G., Venegas J. G., Bellani G., Winkler T., Schroeder T., Petersen B., et al. (2007). Regional gas exchange and cellular metabolic activity in ventilator-induced lung injury. Anesthesiology 106 723–735. 10.1097/
    1. Najac C., Chaumeil M. M., Kohanbash G., Guglielmetti C., Gordon J. W., Okada H., et al. (2016). Detection of inflammatory cell function using 13C magnetic resonance spectroscopy of hyperpolarized [6-13C]-arginine. Sci. Rep. 6 1–10. 10.1038/srep31397
    1. Nelson S. J., Kurhanewicz J., Vigneron D. B., Larson P. E. Z., Harzstark A. L., Ferrone M., et al. (2013). Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci. Transl. Med. 5:198ra108. 10.1126/scitranslmed.3006070
    1. Papazian L., Thomas P., Bregeon F., Garbe L., Zandotti C., Saux P., et al. (1998). Open-lung biopsy in patients with acute respiratory distress syndrome. Anesthesiology 88 935–944. 10.1097/00000542-199804000-00013
    1. Park I., Larson P. E. Z., Gordon J. W., Carvajal L., Chen H.-Y., Bok R., et al. (2018). Development of methods and feasibility of using hyperpolarized carbon-13 imaging data for evaluating brain metabolism in patient studies. Magn. Reson. Med. 100:10158. 10.1002/mrm.27077
    1. Pastorino U. (2010). Lung cancer screening. Br. J. Cancer 12 1681–1686. 10.1038/sj.bjc.6605660
    1. Pauwels E. K., Sturm E. J., Bombardieri E., Cleton F. J., Stokkel M. P. (2000). Positron-emission tomography with [18F]fluorodeoxyglucose. Part I. Biochemical uptake mechanism and its implication for clinical studies. J. Cancer Res. Clin. Oncol. 126 549–559. 10.1007/pl00008465
    1. Pelosi P., D’Onofrio D., Chiumello D., Paolo S., Chiara G., Capelozzi V. L., et al. (2003). Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur. Respir. J. 22 48s–56s. 10.1183/09031936.03.00420803
    1. Pham T., Rubenfeld G. D. (2017). F iftyY ears ofR esearch inARDS. The epidemiology of acute respiratory distress syndrome. A 50th birthday review. Am. J. Respir. Crit. Care Med. 195 860–870. 10.1164/rccm.201609-1773cp
    1. Pourfathi M. (2019). Metabolic imaging of acute lung injury using hyperpolarzied 13C magnetic resonance imaging. Magn. Reson. Med. 78 2106–2115. 10.1002/mrm.26604
    1. Pourfathi M., Cereda M., Chatterjee S., Xin Y., Kadlecek S., Duncan I., et al. (2018). Lung metabolism and inflammation during mechanical ventilation; an imaging approach. Sci. Rep. 8:3525. 10.1038/s41598-018-21901-0
    1. Pourfathi M., Xin Y., Kadlecek S. J., Cereda M. F., Profka H., Hamedani H., et al. (2017). In vivo imaging of the progression of acute lung injury using hyperpolarized [1-13 C] pyruvate. Magn. Reson. Med. 78 2106–2115.
    1. Ramanathan K., Antognini D., Combes A., Paden M., Zakhary B., Ogino M., et al. (2020). Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases. Lancet Respir. Med. 8 518–526. 10.1016/S2213-2600(20)30121-1
    1. Rodrigues R. S., Miller P. R., Bozza F. A., Marchiori E., Zimmerman G. A., Hoffman J. M., et al. (2008). FDG-PET in patients at risk for acute respiratory distress syndrome: a preliminary report. Intensive Care Med. 34 2273–2278. 10.1007/s00134-008-1220-7
    1. Ruppert K. (2014). Biomedical imaging with hyperpolarized noble gases. Rep. Prog. Phys. 77 116701–116735. 10.1088/0034-4885/77/11/116701
    1. Scherer P. M., Chen D. L. (2016). Imaging Pulmonary Inflammation. J. Nucl. Med. 57 1764–1770. 10.2967/jnumed.115.157438
    1. Shaghaghi H., Kadlecek S., Deshpande C., Siddiqui S., Martinez D., Pourfathi M., et al. (2014). Metabolic spectroscopy of inflammation in a bleomycin-induced lung injury model using hyperpolarized 1-13C pyruvate. NMR Biomed. 27 939–947. 10.1002/nbm.3139
    1. Shankar-Hari M., McAuley D. F. (2017). Acute Respiratory Distress Syndrome Phenotypes and Identifying Treatable Traits The Dawn of Personalized Medicine for ARDS. Am. J. Respir. Crit. Care Med. 195 280–281. 10.1164/rccm.201608-1729ED
    1. Siddiqui S., Habertheuer A., Xin Y., Pourfathi M., Tao J. Q., Hamedani H., et al. (2019). Detection of lung transplant rejection in a rat model using hyperpolarized [1-13 C] pyruvate-based metabolic imaging. NMR Biomed. 32:e4107. 10.1002/nbm.4107
    1. Siddiqui S., Kadlecek S., Pourfathi M., Xin Y., Mannherz W., Hamedani H., et al. (2016). The use of hyperpolarized carbon-13 magnetic resonance for molecular imaging. Adv. Drug Deliv. Rev. 113 3–23. 10.1016/j.addr.2016.08.011
    1. Singh S., Srivastava A., Mi L., Caselli R. J., Chen K., Goradia D., et al. (2017). Deep learning based classification of FDG-PET data for alzheimers disease categories. Proc. SPIE Int. Soc. Opt. Eng. 10572:10572J 10.1117/12.2294537
    1. Steinberg K. P., Milberg J. A., Martin T. R., Maunder R. J., Cockrill B. A., Hudson L. D. (1994). Evolution of bronchoalveolar cell populations in the adult respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 150 113–122. 10.1164/ajrccm.150.1.8025736
    1. Summers C., Singh N. R., White J. F., Mackenzie I. M., Johnston A., Solanki C., et al. (2014). Pulmonary retention of primed neutrophils: a novel protective host response, which is impaired in the acute respiratory distress syndrome. Thorax 69 623–629. 10.1136/thoraxjnl-2013-204742
    1. Tabuchi A., Nickles H. T., Kim M., Semple J. W., Koch E., Brochard L., et al. (2016). Acute lung injury causes asynchronous alveolar ventilation that can be corrected by individual sighs. Am. J. Respir. Crit. Care. Med. 193, 396–406. 10.1164/rccm.201505-0901OC
    1. Thind K., Chen A., Friesen-Waldner L., Ouriadov A., Scholl T. J., Fox M., et al. (2012). Detection of radiation-induced lung injury using hyperpolarized 13C magnetic resonance spectroscopy and imaging. Magn. Reson. Med. 185:A5582. 10.1002/mrm.24525
    1. Thompson B. T., Chambers R. C., Liu K. D. (2017). Acute respiratory distress syndrome. N. Engl. J. Med. 377 562–572. 10.1056/NEJMra1608077
    1. Wallace W. E., Gupta N. C., Hubbs A. F., Mazza S. M., Bishop H. A., Keane M. J., et al. (2002). Cis-4-[(18)F]fluoro-L-proline PET imaging of pulmonary fibrosis in a rabbit model. J. Nucl. Med. 43 413–420.
    1. Ware L. B., Matthay M. A. (2000). The Acute Respiratory Distress Syndrome. N. Engl. J. Med. 342, 1334–1349. 10.1056/NEJM200005043421806
    1. Yen Y. F., Kohler S. J., Chen A. P., Tropp J., Bok R., Wolber J., et al. (2009). Imaging considerations for in vivo 13C metabolic mapping using hyperpolarized 13C-pyruvate. Magn. Reson. Med. 62 1–10. 10.1002/mrm.21987

Source: PubMed

3
Iratkozz fel