The Role of Macrophages in the Pathogenesis of ALI/ARDS

Xiaofang Huang, Huiqing Xiu, Shufang Zhang, Gensheng Zhang, Xiaofang Huang, Huiqing Xiu, Shufang Zhang, Gensheng Zhang

Abstract

Despite development in the understanding of the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), the underlying mechanism still needs to be elucidated. Apart from leukocytes and endothelial cells, macrophages are also essential for the process of the inflammatory response in ALI/ARDS. Notably, macrophages play a dual role of proinflammation and anti-inflammation based on the microenvironment in different pathological stages. In the acute phase of ALI/ARDS, resident alveolar macrophages, typically expressing the alternatively activated phenotype (M2), shift into the classically activated phenotype (M1) and release various potent proinflammatory mediators. In the later phase, the M1 phenotype of activated resident and recruited macrophages shifts back to the M2 phenotype for eliminating apoptotic cells and participating in fibrosis. In this review, we summarize the main subsets of macrophages and the associated signaling pathways in three different pathological phases of ALI/ARDS. According to the current literature, regulating the function of macrophages and monocytes might be a promising therapeutic strategy against ALI/ARDS.

Figures

Figure 1
Figure 1
The molecular mechanism of SOCS- and IRF-regulated cytokine signaling in macrophages during ALI/ARDS. (a) Normal resident AMs are activated and shift into the M1 phenotype upon certain stimulation during the exudative phase of ALI/ARDS. Proinflammatory cytokines such as IFN-γ, TNF-α, and IL-β are excreted by M1 macrophages into the site of inflammation. The JAK–STAT1 pathway is activated by IFN-γ, and SOCS1 and SOCS3 are induced. SOCS1 and SOCS3 inhibit the signaling pathway by different mechanisms. IRF5 promotes M1 polarization by directly binding to IL-12 and IL-23 promoters. Leukocytes migrate into the cellular airspace by the activation of chemokines such as KC, MIP-2, and IL-8. Monocytes from the circulation are also recruited by chemokines such as MCP-1 and shift into the M1 phenotype. Crosstalk between SOCS3 and IRF5 may exist. (b) Macrophages shift from the M1 phenotype to the M2 phenotype during the later phase of ALI/ARDS. This process is regulated by several factors, including IL-4, IL-10, IL-13, STAT6, and IRF4. IL-4 or IL-13 activates the JAK–STAT6 pathway, and SOCS1 is induced. SOCS1 feedback inhibits the IL-4/IL-13 signaling. IRF4 inhibits IRF5 activation by a competing interaction with the adaptor MyD88. Recruited macrophages play an important role in eliminating apoptotic cells, debris, and pathogens. AMs: alveolar macrophages; IFN-γ: interferon-γ; JAK: Janus kinase; IL: interleukin; STAT: signal transducer and activator of transcription; IRF: interferon regulator factor; SOCS: suppressors of cytokine signaling; KC: keratinocyte-derived chemokine; MIP: macrophage inflammatory protein; MCP: monocyte chemoattractant protein; TNF-α: tumor necrosis factor α; TLR: toll-like receptor; MyD88: myeloid differentiation factor 88.

References

    1. Ware L. B., Matthay M. A. The acute respiratory distress syndrome. New England Journal of Medicine. 2000;342(18):1334–1349. doi: 10.1056/NEJM200005043421806.
    1. Wheeler A. P., Bernard G. R. Acute lung injury and the acute respiratory distress syndrome: a clinical review. The Lancet. 2007;369(9572):1553–1564. doi: 10.1016/S0140-6736(07)60604-7.
    1. Matuschak G. M., Lechner A. J. Acute lung injury and the acute respiratory distress syndrome: pathophysiology and treatment. Missouri Medicine. 2010;107(4):252–258.
    1. Lomas-Neira J., Chung C. S., Perl M., Gregory S., Biffl W., Ayala A. Role of alveolar macrophage and migrating neutrophils in hemorrhage-induced priming for ALI subsequent to septic challenge. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2006;290(1):L51–L58. doi: 10.1152/ajplung.00028.2005.
    1. Johnston L. K., Rims C. R., Gill S. E., McGuire J. K., Manicone A. M. Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury. American Journal of Respiratory Cell and Molecular Biology. 2012;47(4):417–426. doi: 10.1165/rcmb.2012-0090OC.
    1. Dickensheets H., Vazquez N., Sheikh F., et al. Suppressor of cytokine signaling-1 is an IL-4-inducible gene in macrophages and feedback inhibits IL-4 signaling. Genes and Immunity. 2007;8(1):21–27. doi: 10.1038/sj.gene.6364352.
    1. Liu Y., Stewart K. N., Bishop E., et al. Unique expression of suppressor of cytokine signaling 3 is essential for classical macrophage activation in rodents in vitro and in vivo. Journal of Immunology. 2008;180(9):6270–6278. doi: 10.4049/jimmunol.180.9.6270.
    1. Krausgruber T., Blazek K., Smallie T., et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology. 2011;12(3):231–238. doi: 10.1038/ni.1990.
    1. Satoh T., Takeuchi O., Vandenbon A., et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nature Immunology. 2010;11(10):936–944. doi: 10.1038/ni.1920.
    1. Sica A., Mantovani A. Macrophage plasticity and polarization: in vivo veritas. The Journal of Clinical Investigation. 2012;122(3):787–795. doi: 10.1172/JCI59643.
    1. Short K. R., Kroeze E. J. B. V., Fouchier R. A. M., Kuiken T. Pathogenesis of influenza-induced acute respiratory distress syndrome. The Lancet Infectious Diseases. 2014;14(1):57–69. doi: 10.1016/S1473-3099(13)70286-X.
    1. Duan M., Li W. C., Vlahos R., Maxwell M. J., Anderson G. P., Hibbs M. L. Distinct macrophage subpopulations characterize acute infection and chronic inflammatory lung disease. Journal of Immunology. 2012;189(2):946–955. doi: 10.4049/jimmunol.1200660.
    1. Aggarwal N. R., King L. S., D'Alessio F. R. Diverse macrophage populations mediate acute lung inflammation and resolution. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2014;306(8):L709–L725. doi: 10.1152/ajplung.00341.2013.
    1. Herold S., Gabrielli N. M., Vadasz I. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2013;305(10):L665–L681. doi: 10.1152/ajplung.00232.2013.
    1. van Rooijen N., van Nieuwmegen R., Kamperdijk E. W. A. Elimination of phagocytic cells in the spleen after intravenous injection of liposomeencapsulated dichloromethylene diphosphonate. Ultrastructural aspects of elimination of marginal zone macrophages. Virchows Archiv B Cell Pathology Including Molecular Pathology. 1985;49(1):375–383. doi: 10.1007/BF02912114.
    1. van Rooijen N., Kors N., Ende M., Dijkstra C. D. Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate. Cell and Tissue Research. 1990;260(2):215–222. doi: 10.1007/BF00318625.
    1. Frank J. A., Wray C. M., McAuley D. F., Schwendener R., Matthay M. A. Alveolar macrophages contribute to alveolar barrier dysfunction in ventilator-induced lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2006;291(6):L1191–L1198. doi: 10.1152/ajplung.00055.2006.
    1. Eyal F. G., Hamm C. R., Parker J. C. Reduction in alveolar macrophages attenuates acute ventilator induced lung injury in rats. Intensive Care Medicine. 2007;33(7):1212–1218. doi: 10.1007/s00134-007-0651-x.
    1. Koay M. A., Gao X., Washington M. K., et al. Macrophages are necessary for maximal nuclear factor-κB activation in response to endotoxin. American Journal of Respiratory Cell and Molecular Biology. 2002;26(5):572–578. doi: 10.1165/ajrcmb.26.5.4748.
    1. Machado-Aranda D., V. Suresh M., Yu B., Dolgachev V., Hemmila M. R., Raghavendran K. Alveolar macrophage depletion increases the severity of acute inflammation following nonlethal unilateral lung contusion in mice. Journal of Trauma and Acute Care Surgery. 2014;76(4):982–990. doi: 10.1097/TA.0000000000000163.
    1. Broug-Holub E., Toews G. B., van Iwaarden J., et al. Alveolar macrophages are required for protective pulmonary defenses in murine Klebsiella pneumonia: elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival. Infection and Immunity. 1997;65(4):1139–1146.
    1. Narasaraju T., Yang E., Samy R. P., et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. The American Journal of Pathology. 2011;179(1):199–210. doi: 10.1016/j.ajpath.2011.03.013.
    1. Williams A. E., Chambers R. C. The mercurial nature of neutrophils: still an enigma in ARDS? American Journal of Physiology. Lung Cellular and Molecular Physiology. 2014;306(3):L217–L230. doi: 10.1152/ajplung.00311.2013.
    1. Duffy A. J., Nolan B., Sheth K., Collette H., De M., Bankey P. E. Inhibition of alveolar neutrophil immigration in endotoxemia is macrophage inflammatory protein 2 independent. The Journal of Surgical Research. 2000;90(1):51–57. doi: 10.1006/jsre.2000.5835.
    1. Zamjahn J. B., Quinton L. J., Mack J. C., Frevert C. W., Nelson S., Bagby G. J. Differential flux of macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant from the lung after intrapulmonary delivery. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2011;301(4):L568–L574. doi: 10.1152/ajplung.00340.2010.
    1. Donnelly S. C., Haslett C., Strieter R. M., et al. Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. The Lancet. 1993;341(8846):643–647. doi: 10.1016/0140-6736(93)90416-E.
    1. Chilvers E. R., Cadwallader K. A., Reed B. J., White J. F., Condliffe A. M. The function and fate of neutrophils at the inflamed site: prospects for therapeutic intervention. Journal of the Royal College of Physicians of London. 2000;34(1):68–74.
    1. Webster S. J., Daigneault M., Bewley M. A., et al. Distinct cell death programs in monocytes regulate innate responses following challenge with common causes of invasive bacterial disease. Journal of Immunology. 2010;185(5):2968–2979. doi: 10.4049/jimmunol.1000805.
    1. Amano H., Morimoto K., Senba M., et al. Essential contribution of monocyte chemoattractant protein-1/C-C chemokine ligand-2 to resolution and repair processes in acute bacterial pneumonia. Journal of Immunology. 2004;172(1):398–409. doi: 10.4049/jimmunol.172.1.398.
    1. Seitz D. H., Niesler U., Palmer A., et al. Blunt chest trauma induces mediator-dependent monocyte migration to the lung. Critical Care Medicine. 2010;38(9):1852–1859. doi: 10.1097/CCM.0b013e3181e8ad10.
    1. Christensen P. J., du M., Moore B., Morris S., Toews G. B., Paine R., III Expression and functional implications of CCR2 expression on murine alveolar epithelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2004;286(1):L68–L72. doi: 10.1152/ajplung.00079.2003.
    1. Herold S., Tabar T. S., Janßen H., et al. Exudate macrophages attenuate lung injury by the release of IL-1 receptor antagonist in gram-negative pneumonia. American Journal of Respiratory and Critical Care Medicine. 2011;183(10):1380–1390. doi: 10.1164/rccm.201009-1431OC.
    1. Dhaliwal K., Scholefield E., Ferenbach D., et al. Monocytes control second-phase neutrophil emigration in established lipopolysaccharide-induced murine lung injury. American Journal of Respiratory and Critical Care Medicine. 2012;186(6):514–524. doi: 10.1164/rccm.201112-2132OC.
    1. Mould K. J., Barthel L., Mohning M. P., et al. Cell origin dictates programming of resident versus recruited macrophages during acute lung injury. American Journal of Respiratory Cell and Molecular Biology. 2017;57(3):294–306. doi: 10.1165/rcmb.2017-0061OC.
    1. Herold S., Mayer K., Lohmeyer J. Acute lung injury: how macrophages orchestrate resolution of inflammation and tissue repair. Frontiers in Immunology. 2011;2:p. 65. doi: 10.3389/fimmu.2011.00065.
    1. Arora S., Dev K., Agarwal B., Das P., Syed M. A. Macrophages: their role, activation and polarization in pulmonary diseases. Immunobiology. 2018;223(4-5):383–396. doi: 10.1016/j.imbio.2017.11.001.
    1. Taylor P. R., Martinez-Pomares L., Stacey M., Lin H. H., Brown G. D., Gordon S. Macrophage receptors and immune recognition. Annual Review of Immunology. 2005;23(1):901–944. doi: 10.1146/annurev.immunol.23.021704.115816.
    1. Higgins D. M., Sanchez-Campillo J., Rosas-Taraco A. G., et al. Relative levels of M-CSF and GM-CSF influence the specific generation of macrophage populations during infection with Mycobacterium tuberculosis. Journal of Immunology. 2008;180(7):4892–4900. doi: 10.4049/jimmunol.180.7.4892.
    1. Wilson M. R., Choudhury S., Goddard M. E., O'Dea K. P., Nicholson A. G., Takata M. High tidal volume upregulates intrapulmonary cytokines in an in vivo mouse model of ventilator-induced lung injury. Journal of Applied Physiology. 2003;95(4):1385–1393. doi: 10.1152/japplphysiol.00213.2003.
    1. Beck-Schimmer B., Schwendener R., Pasch T., Reyes L., Booy C., Schimmer R. C. Alveolar macrophages regulate neutrophil recruitment in endotoxin-induced lung injury. Respiratory Research. 2005;6(1):p. 61. doi: 10.1186/1465-9921-6-61.
    1. Bhatia M., Zemans R. L., Jeyaseelan S. Role of chemokines in the pathogenesis of acute lung injury. American Journal of Respiratory Cell and Molecular Biology. 2012;46(5):566–572. doi: 10.1165/rcmb.2011-0392TR.
    1. Vergadi E., Vaporidi K., Theodorakis E. E., et al. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice. Journal of Immunology. 2013;192(1):394–406. doi: 10.4049/jimmunol.1300959.
    1. Da Silva-Santos J. E., Santos-Silva M. C., Cunha Fde Q., Assreuy J. The role of ATP-sensitive potassium channels in neutrophil migration and plasma exudation. The Journal of Pharmacology and Experimental Therapeutics. 2002;300(3):946–951. doi: 10.1124/jpet.300.3.946.
    1. Xu Y., Meng C., Liu G., et al. Classically activated macrophages protect against lipopolysaccharide-induced acute lung injury by expressing amphiregulin in mice. Anesthesiology. 2016;124(5):1086–1099. doi: 10.1097/ALN.0000000000001026.
    1. Dolinay T., Kaminski N., Felgendreher M., et al. Gene expression profiling of target genes in ventilator-induced lung injury. Physiological Genomics. 2006;26(1):68–75. doi: 10.1152/physiolgenomics.00110.2005.
    1. Minutti C. M., García-Fojeda B., Sáenz A., et al. Surfactant protein A prevents IFN-γ/IFN-γ receptor interaction and attenuates classical activation of human alveolar macrophages. Journal of Immunology. 2016;197(2):590–598. doi: 10.4049/jimmunol.1501032.
    1. Meraz M. A., White J. M., Sheehan K. C. F., et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell. 1996;84(3):431–442. doi: 10.1016/S0092-8674(00)81288-X.
    1. Durbin J. E., Hackenmiller R., Simon M. C., Levy D. E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell. 1996;84(3):443–450. doi: 10.1016/S0092-8674(00)81289-1.
    1. Alexander W. S., Hilton D. J. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annual Review of Immunology. 2004;22(1):503–529. doi: 10.1146/annurev.immunol.22.091003.090312.
    1. Yasukawa H., Sasaki A., Yoshimura A. Negative regulation of cytokine signaling pathways. Annual Review of Immunology. 2000;18(1):143–164. doi: 10.1146/annurev.immunol.18.1.143.
    1. Linossi E. M., Babon J. J., Hilton D. J., Nicholson S. E. Suppression of cytokine signaling: the SOCS perspective. Cytokine & Growth Factor Reviews. 2013;24(3):241–248. doi: 10.1016/j.cytogfr.2013.03.005.
    1. Nakagawa R., Naka T., Tsutsui H., et al. SOCS-1 participates in negative regulation of LPS responses. Immunity. 2002;17(5):677–687. doi: 10.1016/S1074-7613(02)00449-1.
    1. Baetz A., Frey M., Heeg K., Dalpke A. H. Suppressor of cytokine signaling (SOCS) proteins indirectly regulate toll-like receptor signaling in innate immune cells. The Journal of Biological Chemistry. 2004;279(52):54708–54715. doi: 10.1074/jbc.M410992200.
    1. Liang Y. B., Tang H., Chen Z. B., et al. Downregulated SOCS1 expression activates the JAK1/STAT1 pathway and promotes polarization of macrophages into M1 type. Molecular Medicine Reports. 2017;16(5):6405–6411. doi: 10.3892/mmr.2017.7384.
    1. Qin H., Holdbrooks A. T., Liu Y., Reynolds S. L., Yanagisawa L. L., Benveniste E. N. SOCS3 deficiency promotes M1 macrophage polarization and inflammation. Journal of Immunology. 2012;189(7):3439–3448. doi: 10.4049/jimmunol.1201168.
    1. Sun K., He S. B., Qu J. G., et al. IRF5 regulates lung macrophages M2 polarization during severe acute pancreatitis in vitro. World Journal of Gastroenterology. 2016;22(42):9368–9377. doi: 10.3748/wjg.v22.i42.9368.
    1. Qin H., Yeh W. I., de Sarno P., et al. Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(13):5004–5009. doi: 10.1073/pnas.1117218109.
    1. Gordon S., Martinez F. O. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604. doi: 10.1016/j.immuni.2010.05.007.
    1. Honda K., Taniguchi T. IRFs: master regulators of signalling by toll-like receptors and cytosolic pattern-recognition receptors. Nature Reviews. Immunology. 2006;6(9):644–658. doi: 10.1038/nri1900.
    1. Androulidaki A., Iliopoulos D., Arranz A., et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity. 2009;31(2):220–231. doi: 10.1016/j.immuni.2009.06.024.
    1. Gordon S. Alternative activation of macrophages. Nature Reviews Immunology. 2003;3(1):23–35. doi: 10.1038/nri978.
    1. Colin S., Chinetti-Gbaguidi G., Staels B. Macrophage phenotypes in atherosclerosis. Immunological Reviews. 2014;262(1):153–166. doi: 10.1111/imr.12218.
    1. Suzuki K., Meguro K., Nakagomi D., Nakajima H. Roles of alternatively activated M2 macrophages in allergic contact dermatitis. Allergology International. 2017;66(3):392–397. doi: 10.1016/j.alit.2017.02.015.
    1. Henson P. M., Hume D. A. Apoptotic cell removal in development and tissue homeostasis. Trends in Immunology. 2006;27(5):244–250. doi: 10.1016/j.it.2006.03.005.
    1. Elliott M. R., Koster K. M., Murphy P. S. Efferocytosis signaling in the regulation of macrophage inflammatory responses. Journal of Immunology. 2017;198(4):1387–1394. doi: 10.4049/jimmunol.1601520.
    1. Kim S., Elkon K. B., Ma X. Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity. 2004;21(5):643–653. doi: 10.1016/j.immuni.2004.09.009.
    1. Byrne A., Reen D. J. Lipopolysaccharide induces rapid production of IL-10 by monocytes in the presence of apoptotic neutrophils. Journal of Immunology. 2002;168(4):1968–1977. doi: 10.4049/jimmunol.168.4.1968.
    1. Ariel A., Serhan C. N. New lives given by cell death: macrophage differentiation following their encounter with apoptotic leukocytes during the resolution of inflammation. Frontiers in Immunology. 2012;3:p. 4. doi: 10.3389/fimmu.2012.00004.
    1. Korns D., Frasch S. C., Fernandez-Boyanapalli R., Henson P. M., Bratton D. L. Modulation of macrophage efferocytosis in inflammation. Frontiers in Immunology. 2011;2:p. 57. doi: 10.3389/fimmu.2011.00057.
    1. Akilov O. E., Wu M. X., Jin Y., et al. Vaccination with photodynamic therapy-treated macrophages induces highly suppressive T-regulatory cells. Photodermatology, Photoimmunology & Photomedicine. 2011;27(2):97–107. doi: 10.1111/j.1600-0781.2011.00578.x.
    1. Boenisch O., Lopez M., Elyaman W., Magee C. N., Ahmad U., Najafian N. Ex vivo expansion of human Tregs by rabbit ATG is dependent on intact STAT3-signaling in CD4+ T cells and requires the presence of monocytes. American Journal of Transplantation. 2012;12(4):856–866. doi: 10.1111/j.1600-6143.2011.03978.x.
    1. Liu G., Ma H., Qiu L., et al. Phenotypic and functional switch of macrophages induced by regulatory CD4+CD25+ T cells in mice. Immunology & Cell Biology. 2011;89(1):130–142. doi: 10.1038/icb.2010.70.
    1. Tiemessen M. M., Jagger A. L., Evans H. G., van Herwijnen M. J. C., John S., Taams L. S. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(49):19446–19451. doi: 10.1073/pnas.0706832104.
    1. Taams L. S., van Amelsfort J. M. R., Tiemessen M. M., et al. Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells. Human Immunology. 2005;66(3):222–230. doi: 10.1016/j.humimm.2004.12.006.
    1. D’Alessio F. R., Tsushima K., Aggarwal N. R., et al. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. The Journal of Clinical Investigation. 2009;119(10):2898–2913. doi: 10.1172/JCI36498.
    1. O'Shea J. J., Paul W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 2010;327(5969):1098–1102. doi: 10.1126/science.1178334.
    1. Heller N. M., Qi X., Junttila I. S., et al. Type I IL-4Rs selectively activate IRS-2 to induce target gene expression in macrophages. Science Signaling. 2008;1(51, article ra17) doi: 10.1126/scisignal.1164795.
    1. D'Alessio F. R., Craig J. M., Singer B. D., et al. Enhanced resolution of experimental ARDS through IL-4-mediated lung macrophage reprogramming. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2016;310(8):L733–L746. doi: 10.1152/ajplung.00419.2015.
    1. Negishi H., Ohba Y., Yanai H., et al. Negative regulation of toll-like-receptor signaling by IRF-4. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(44):15989–15994. doi: 10.1073/pnas.0508327102.
    1. Thompson B. T., Chambers R. C., Liu K. D. Acute respiratory distress syndrome. The New England Journal of Medicine. 2017;377(19):1904–1905. doi: 10.1056/NEJMc1711824.
    1. Pechkovsky D. V., Prasse A., Kollert F., et al. Alternatively activated alveolar macrophages in pulmonary fibrosis-mediator production and intracellular signal transduction. Clinical Immunology. 2010;137(1):89–101. doi: 10.1016/j.clim.2010.06.017.
    1. Gibbons M. A., MacKinnon A. C., Ramachandran P., et al. Ly6Chi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis. American Journal of Respiratory and Critical Care Medicine. 2011;184(5):569–581. doi: 10.1164/rccm.201010-1719OC.
    1. Duru N., Wolfson B., Zhou Q. Mechanisms of the alternative activation of macrophages and non-coding RNAs in the development of radiation-induced lung fibrosis. World Journal of Biological Chemistry. 2016;7(4):231–239. doi: 10.4331/wjbc.v7.i4.231.
    1. Mora A. L., Torres-González E., Rojas M., et al. Activation of alveolar macrophages via the alternative pathway in herpesvirus-induced lung fibrosis. American Journal of Respiratory Cell and Molecular Biology. 2006;35(4):466–473. doi: 10.1165/rcmb.2006-0121OC.
    1. Wakayama H., Hashimoto N., Matsushita Y., et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice. Cytotherapy. 2015;17(8):1119–1129. doi: 10.1016/j.jcyt.2015.04.009.
    1. Pesce J. T., Ramalingam T. R., Mentink-Kane M. M., et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathogens. 2009;5(4, article e1000371) doi: 10.1371/journal.ppat.1000371.

Source: PubMed

3
Iratkozz fel