Biological functional relevance of asymmetric dimethylarginine (ADMA) in cardiovascular disease

Sara Franceschelli, Alessio Ferrone, Mirko Pesce, Graziano Riccioni, Lorenza Speranza, Sara Franceschelli, Alessio Ferrone, Mirko Pesce, Graziano Riccioni, Lorenza Speranza

Abstract

There is growing evidence that increased levels of the endogenous NO synthase inhibitor asymmetric dimethylarginine (ADMA) may contribute to endothelial dysfunction. Studies in animal models as well as in humans have suggested that the increase in ADMA occurs at a time when vascular disease has not yet become clinically evident. ADMA competitively inhibits NO elaboration by displacing L-arginine from NO synthase. In a concentration-dependent manner, it thereby interferes not only with endothelium-dependent, NO-mediated vasodilation, but also with other biological functions exerted by NO. The upshot may be a pro-atherogenic state. Recently, several studies have investigated the effect of various therapeutical interventions on ADMA plasma concentrations.

Figures

Figure 1.
Figure 1.
The role of DDAH1 in the metabolism of the nitric oxide synthase (NOS) antagonists asymmetric dimethylarginine (ADMA) and NG-monomethylarginine (NMMA). PRMTs, protein arginine methyltransferases; SDMA, symmetrical dimethylarginine.
Figure 2.
Figure 2.
Flow diagram outlining clinical conditions that have been reported to be associated with elevated ADMA concentration, and the interactive roles of ROS and ADMA in relating cardiovascular risk factors to pathophysiological changes in tissues that may underlie cardiovascular disease. ROS, reactive oxygen species; MMP, matrix metalloproteinase; VSMC, vascular smooth muscle cell.

References

    1. Naseem K.M. The role of nitric oxide in cardiovascular diseases. Mol. Aspects Med. 2005;26:33–65.
    1. Napoli C., Ignarro L.J. Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases. Arch. Pharm. Res. 2009;32:1103–1108.
    1. Antoniades C., Shirodaria C., Leeson P., Antonopoulos A., Warrick N., van Assche T., Cunnington C., Tousoulis D., Pillai P., Ratnatunga C., et al. Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling: Implications for endothelial function in human atherosclerosis. Eur. Heart J. 2009;30:1142–1150.
    1. Olken N.M., Marletta M.A. NG-methyl-l-arginine functions as an alternate substrate and mechanism-based inhibitor of nitric oxide synthase. Biochemistry. 1993;32:9677–9685.
    1. Fickling S., Leone A., Nussey S., Vallance P., Whitley G. Synthesis of NG, NG dimethylarginine by human endothelial cells. Endothelium. 1993;1:137–140.
    1. Bedford M.T., Clarke S.G. Protein arginine methylation in mammals: Who, what, and why. Mol. Cell. 2009;33:1–13.
    1. Palm F., Onozato M.L., Luo Z., Wilcox C.S. Dimethylargininedimethylaminohydrolase (DDAH): Expression, regulation, and function in the cardiovascular and renal systems. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H3227–H3245.
    1. Rodionov R.N., Murry D.J., Vaulman S.F., Stevens J.W., Lentz S.R. Human alanine-glyoxylate aminotransferase 2 lowers asymmetric dimethylarginine and protects from inhibition of nitric oxide production. J. Biol. Chem. 2010;285:5385–5391.
    1. Closs E.I., Boissel J.P., Habermeier A., Rotmann A. Structure and function of cationic amino acid transporters (CATs) J. Membr. Biol. 2006;213:67–77.
    1. Davids M., van Hell A.J., Visser M., Nijveldt R.J., van Leeuwen P.A., Teerlink T. Role of the human erythrocyte in generation and storage of asymmetric dimethylarginine. Am. J. Physiol. Heart Circ. Physiol. 2012;302:H1762–H1770.
    1. Billecke S.S., Kitzmiller L.A., Northrup J.J., Whitesall S.E., Kimoto M., Hinz A.V., D’Alecy L.G. Contribution of whole blood to the control of plasma asymmetrical dimethylarginine. Am. J. Physiol. Heart Circ. Physiol. 2006;291:1788–1796.
    1. Iarlori C., Gambi D., Lugaresi A., Patruno A., Felaco M., Salvatore M., Speranza L., Reale M. Reduction of free radicals in multiple sclerosis: Effect of glatiramer acetate (Copaxone) Mult. Scler. 2008;14:739–748.
    1. Felaco M., di Maio F.D., de Fazio P., D’Arcangelo C., de Lutiis M.A., Varvara G., Grilli A., Barbacane R.C., Reale M., Conti P. Localization of the e-NOS enzyme in endothelial cells and odontoblasts of healthy human dental pulp. Life Sci. 2000;68:297–306.
    1. Franceschelli S., Pesce M., Vinciguerra I., Ferrone A., Riccioni G., Patruno A., Grilli A., Felaco M., Speranza L. Licocalchone-C extracted from Glycyrrhiza glabra inhibits lipopolysaccharide-interferon-γ inflammation by improving antioxidantconditions and regulating inducible nitric oxide synthase expression. Molecules. 2011;16:5720–5734.
    1. Grilli A., de Lutiis M.A., Patruno A., Speranza L., Gizzi F., Taccardi A.A., di Napoli P., de Caterina R., Conti P., Felaco M. Inducible nitric oxide synthase and heme oxygenase-1 in rat heart: Direct effect of chronic exposure to hypoxia. Ann. Clin. Lab. Sci. 2003;33:208–215.
    1. Speranza L., Franceschelli S., Pesce M., Ferrone A., Patruno A., Riccioni G., de Lutiis M.A., Felaco M., Grilli A. Negative feedback interaction of HO-1/INOS in PBMC of acute congestive heart failure patients. J. Biol. Regul. Homeost. Agents. 2013;27:739–748.
    1. Han J., Shuvaev V.V., Muzykantov V.R. Targeted interception of signaling reactive oxygen species in the vascular endothelium. Ther. Deliv. 2012;3:263–276.
    1. Kampoli A.M., Tousoulis D., Tentolouris C., Stefanadis C. Novel agents targeting nitric oxide. Curr. Vasc. Pharmacol. 2012;10:61–76.
    1. Sharshar T., Gray F., Lorin de la Grandmaison G., Hopkinson N.S., Ross E., Dorandeu A., Orlikowski D., Raphael J.C., Gajdos P., Annane D. Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet. 2003;362:1799–1805.
    1. Speranza L., Franceschelli S., Pesce M., Vinciguerra I., de Lutiis M.A., Grilli A., Felaco M., Patruno A. Phosphodiesterase type-5 inhibitor and oxidative stress. Int. J. Immunopathol. Pharmacol. 2008;21:879–889.
    1. Caplin B., Leiper J. Endogenous nitric oxide synthase inhibitors in the biology of disease: Markers, mediators, and regulators? Arterioscler. Thromb. Vasc. Biol. 2012;32:1343–1353.
    1. Riccioni G., Speranza L., Scotti L., Bucciarelli V., di Ilio E., D’Orazio N., Pesce M., Aceto A., Sorrenti V., Frigiola A., et al. The effect of pharmacological treatment on ADMA in patients with heart failure. Front. Biosci. (Elite Ed.) 2011;3:1310–1314.
    1. Ueda S., Yamagishi S., Matsumoto Y., Fukami K., Okuda S. Asymmetric dimethylarginine (ADMA) is a novel emerging risk factor for cardiovascular disease and the development of renal injury in chronic kidney disease. Clin. Exp. Nephrol. 2007;11:115–121.
    1. Galal O., Podlogar J., Verspohl E.J. Impact of ADMA (asymmetric dimethylarginine) on physiology with respect to diabetes mellitus and respiratory system BEAS-2B cells (human bronchial epithelial cells) J. Pharm. Pharmacol. 2013;65:253–263.
    1. Ghebremariam Y.T., Erlanson D.A., Cooke J.P. A novel and potent inhibitor of dimethylarginine dimethylaminohydrolase: A modulator of cardiovascular nitric oxide. J. Pharmacol. Exp. Ther. 2013 doi: 10.1124/jpet.113.206847.
    1. Labruijere S., van Houten E.L., de Vries R., Musterd-Bagghoe U.M., Garrelds I.M., Kramer P., Danser A.H., Villalón C.M., Visser J.A., van den Brink A.M. Analysis of the vascular responses in a murine model of polycystic ovary syndrome. J. Endocrinol. 2013;218:205–213.
    1. Beutel G., Perthel R., Suntharalingam M., Bode-Böger S.M., Martens-Lobenhoffer J., Kielstein J.T., Kielstein H. Effect of chronic elevated asymmetric dimethylarginine (ADMA) levels on granulopoiesis. Ann. Hematol. 2013;92:505–508.
    1. Ghebremariam Y.T., Yamada K., Lee J.C., Johnson C.L., Atzler D., Anderssohn M., Agrawal R., Higgins J.P., Patterson A.J., Böger R.H., et al. FXR agonist INT-747 upregulates DDAH expression and enhances insulin sensitivity in high-salt fed Dahl rats. PLoS One. 2013;8:e60653.
    1. Li Volti G., Salomone S., Sorrenti V., Mangiameli A., Urso V., Siarkos I., Galvano F., Salamone F. Effect of silibinin on endothelial dysfunction and ADMA levels in obese diabetic mice. Cardiovasc. Diabetol. 2011;10:62.
    1. Li Volti G., Sorrenti V., Acquaviva R., Murabito P., Gullo A., Barcellona M.L., Galvano F., Rodella L., Rezzani R., Vanella L., et al. Effect of ischemia-reperfusion on renal expression and activity of N(G)-N(G)-dimethylarginine dimethylaminohydrolases. Anesthesiology. 2008;109:1054–1062.
    1. Speranza L., Franceschelli S., D’Orazio N., Gaeta R., Bucciarelli T., Felaco M., Grilli A., Riccioni G. The biological effect of pharmacological treatment on dimethylaminohydrolases (DDAH-1) and cationic amino acid transporter-1 (CAT-1) expression in patients with acute congestive heart failure. Microvasc. Res. 2011;82:391–396.
    1. Davids M., Teerlink T. Plasma concentrations of arginine and asymmetric dimethylarginine do not reflect their intracellular concentrations in peripheral blood mononuclear cells. Metabolism. 2013;62:1455–1461.
    1. Haghikia A., Podewski E., Libhaber E., Labidi S., Fischer D., Roentgen P., Tsikas D., Jordan J., Lichtinghagen R., von Kaisenberg C.S., et al. Phenotyping and outcome on contemporary management in a German cohort of patients with peripartum cardiomyopathy. Basic Res. Cardiol. 2013;108:366.
    1. Riccioni G., D’Orazio N., Salvatore C., Franceschelli S., Pesce M., Speranza L. Carotenoids and vitamins C and E in the prevention of cardiovascular disease. Int. J. Vitam. Nutr. Res. 2012;82:15–26.
    1. Speranza L., Pesce M., Franceschelli S., Bucciarelli T., Gallina S., Riccioni G., Patruno A., Felaco M. The biological evaluation of ADMA/SDMA and eNOS in patients with ACHF. Front. Biosci. (Elite Ed.) 2013;5:551–557.
    1. Szlachcic A., Krzysiek-Maczka G., Pajdo R., Targosz A., Magierowski M., Jasnos K., Drozdowicz D., Kwiecien S., Brzozowski T. The impact of asymmetric dimethylarginine (ADMA), the endogenous nitric oxide (NO) synthase inhibitor, to the pathogenesis of gastric mucosal damage. Curr. Pharm. Des. 2013;19:90–97.
    1. Sydow K., Hornig B., Arakawa N., Bode-Böger S.M., Tsikas D., Münzel T., Böger R.H. Endothelial dysfunction in patients with peripheral arterial disease and chronic hyperhomocysteinemia: Potential role of ADMA. Vasc. Med. 2004;9:93–101.
    1. Dimitroulas T., Giannakoulas G., Sfetsios T., Karvounis H., Dimitroula H., Koliakos G., Settas L. Asymmetrical dimethylarginine in systemic sclerosis-related pulmonary arterial hypertension. Rheumatology. 2008;47:1682–1685.
    1. Sorrenti V., Mazza F., Campisi A., Vanella L., Li Volti G., di Giacomo C. High glucose-mediated imbalance of nitric oxide synthase and dimethylargininedimethylaminohydrolase expression in endothelial cells. Curr. Neurovasc. Res. 2006;3:49–54.
    1. Mohan S., Fung H.L. Mechanism of cellular oxidation stress induced by asymmetric dimethylarginine. Int. J. Mol. Sci. 2012;13:7521–7531.
    1. Aldámiz-Echevarría L., Andrade F. Asymmetric dimethylarginine, endothelial dysfunction and renal disease. Int. J. Mol. Sci. 2012;13:11288–11311.
    1. Cao Y., Mu J.J., Fang Y., Yuan Z.Y., Liu F.Q. Impact of high salt independent of blood pressure on PRMT/ADMA/DDAH. Pathway in the aorta of dahl salt-sensitive rats. Int. J. Mol. Sci. 2013;14:8062–8072.
    1. Antoniades C., Demosthenous M., Tousoulis D., Antonopoulos A.S., Vlachopoulos C., Toutouza M., Marinou K., Bakogiannis C., Mavragani K., Lazaros G., et al. Role of asymmetrical dimethylarginine in inflammation-induced endothelial dysfunction in human atherosclerosis. Hypertension. 2011;58:93–98.
    1. Zuccalà A., Fiorenza S., Rapanà R., Santoro A. Hypertension, atherosclerosis and kidney. G. Ital. Nefrol. 2005;22(Suppl 31):S9–S14.
    1. Hsu C.P., Lin S.J., Chung M.Y., Lu T.M. Asymmetric dimethylarginine predicts clinical outcomes in ischemic chronic heart failure. Atherosclerosis. 2012;225:504–510.

Source: PubMed

3
Iratkozz fel