Diminished brain glucose metabolism is a significant determinant for falling rates of systemic glucose utilization during sleep in normal humans

P J Boyle, J C Scott, A J Krentz, R J Nagy, E Comstock, C Hoffman, P J Boyle, J C Scott, A J Krentz, R J Nagy, E Comstock, C Hoffman

Abstract

Systemic glucose utilization declines during sleep in man. We tested the hypothesis that this decline in utilization is largely accounted for by reduced brain glucose metabolism. 10 normal subjects underwent internal jugular and radial artery cannulation to determine cerebral blood flow by N2O equilibrium technique and to quantitate cross-brain glucose and oxygen differences before and every 3 h during sleep. Sleep stage was graded by continuous electroencephalogram, and systemic glucose turnover was estimated by isotope dilution. Brain glucose metabolism fell from 33.6 +/- 2.2 mumol/100 g per min (mean +/- SE) before sleep (2300 h) to a mean nadir of 24.3 +/- 1.1 mumol/100 g per min at 0300 h during sleep (P = 0.001). Corresponding rates of systemic glucose utilization fell from 13.2 +/- 0.8 to 11.0 +/- 0.5 mumol/kg per min (P = 0.003). Diminished brain glucose metabolism was the product of a reduced arteriovenous glucose difference, 0.643 +/- 0.024 to 0.546 +/- 0.020 mmol/liter (P = 0.002), and cerebral blood flow, 50.3 +/- 2.8 to 44.6 +/- 1.4 cc/100 g per min (P = 0.021). Brain oxygen metabolism fell commensurately from 153.4 +/- 11.8 to 128.0 +/- 8.4 mumol/100 g per min (P = 0.045). The observed reduction in brain metabolism occurred independent of stage of central nervous system electrical activity (electroencephalographic data), and was more closely linked to duration of sleep. We conclude that a decline in brain glucose metabolism is a significant determinant of falling rates of systemic glucose utilization during sleep.

References

    1. Acta Neurol Scand. 1989 Dec;80(6):481-91
    1. Am J Physiol. 1989 May;256(5 Pt 1):E651-61
    1. J Neurosurg. 1989 Feb;70(2):222-30
    1. Science. 1988 Jul 22;241(4864):462-4
    1. Biochem J. 1987 Jul 15;245(2):313-24
    1. J Clin Invest. 1955 Jul;34(7, Part 1):1092-1100
    1. J Clin Invest. 1986 May;77(5):1525-32
    1. Science. 1965 Dec 17;150(3703):1621-3
    1. J Appl Physiol (1985). 1991 Jun;70(6):2597-601
    1. J Cereb Blood Flow Metab. 1991 May;11(3):502-7
    1. J Appl Physiol. 1973 Nov;35(5):620-5
    1. N Engl J Med. 1985 Jun 6;312(23):1473-9
    1. Diabetes Care. 1980 Mar-Apr;3(2):261-5
    1. J Clin Invest. 1986 Dec;78(6):1568-78
    1. Diabetes. 1977 Jan;26(1):22-9
    1. Electroencephalogr Clin Neurophysiol. 1971 Feb;30(2):97-112
    1. J Clin Invest. 1948 Jul;27(4):476-83
    1. J Appl Physiol. 1961 Mar;16:313-20
    1. Ann Neurol. 1980 May;7(5):471-8
    1. Physiol Rev. 1983 Oct;63(4):1481-535
    1. Ann Neurol. 1987 Sep;22(3):289-97
    1. Nature. 1982 May 27;297(5864):325-7
    1. Mol Cell Biochem. 1982 Oct 18;48(2):97-120
    1. J Clin Invest. 1988 Aug;82(2):445-9
    1. Nature. 1964 Sep 12;203:1141-2
    1. Life Sci. 1989;45(15):1349-56
    1. Aviat Space Environ Med. 1976 Oct;47(10):1046-51
    1. J Clin Invest. 1968 Sep;47(9):2079-90
    1. Diabetologia. 1992 Apr;35(4):372-9
    1. Brain Res. 1990 Apr 9;513(1):136-43
    1. Diabetes. 1989 Jan;38(1):7-16
    1. Am J Physiol. 1987 May;252(5 Pt 1):E606-15
    1. J Clin Endocrinol Metab. 1989 Mar;68(3):647-53
    1. J Clin Endocrinol Metab. 1978 Jun;46(6):883-90
    1. Diabetes. 1989 Mar;38(3):285-90
    1. Brain Res. 1985 Feb 18;327(1-2):362-6

Source: PubMed

3
Iratkozz fel